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Abstract. When one applies the discrete Fourier transform
to analyze finite-length time series, discontinuities at the data
boundaries will distort its Fourier power spectrum. In this
paper, based on a rigid statistics framework, we present a
new significance test method which can extract the intrin-
sic feature of a geophysical time series very well. We show
the difference in significance level compared with traditional
Fourier tests by analyzing the Arctic Oscillation (AO) and
the Nino3.4 time series. In the AO, we find significant peaks
at about 2.8, 4.3, and 5.7 yr periods and in Nino3.4 at about
12 yr period in tests against red noise. These peaks are not
significant in traditional tests.

1 Introduction

Continuous and Discrete Fourier transform has been used
for numerous studies in geophysics for a long time (Jenk-
ins and Watts, 1968; Chatfield, 1989; Zar, 1999). However,
when one applies the discrete Fourier transform to analyze
finite-length time series, Fourier power spectrum obtained
is distorted in the high frequency domain and the low fre-
quency domain. The reason why Fourier power spectrum is
distorted in the high frequency domain is that the time se-
ries is discontinuous at the data boundaries. The reason why
Fourier power spectrum is distorted in the low frequency do-
main is that the time series is of finite length. So, when one
uses the discrete Fourier transform to compute the Fourier
power spectrum, only the middle part of Fourier power spec-
trum obtained is real. In order to reduce boundary effect,
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two algorithms have been tried previously (e.g. Oppenheim
and Schafer, 1989). The first algorithm is to pad the time
series on each endpoint with zeroes, but it artificially cre-
ates discontinuities at the endpoints. The second algorithm
uses some window (e.g. “cosine damping”) to preprocess the
time series. Although it overcomes the boundary effect, at
the same time, we lose almost all the information at the end-
points.

Statistical significance tests are used to extract intrinsic
features from Fourier power spectrum of geophysical time
series against a null hypothesis of some noise model. Tradi-
tional significance tests on Fourier power spectra consist of
the following three steps.

Step 1.Use the discrete Fourier transform to compute
the Fourier power spectrum of geophysical time series.

Step 2.Choose a suitable null hypothesis. For many
geophysical phenomena, an appropriate noise model is
red noise, that is, a first order autoregressive process.
However, choice of noise model is crucial to reliable
significance testing (Mann and Lees, 1996).

Step 3.Extract intrinsic features. If a peak in the Fourier
power spectrum of geophysical time series is above this
background noise spectrum at some arbitrary level, say
95 % confidence level, then it is a true feature of geo-
physical time series with 95 % confidence level.

Since in reality, we only deal with finite-length geophysi-
cal time series, discontinuities at the data boundaries will dis-
tort the Fourier power spectrum. Therefore, significance tests
are unreliable. The purpose of this paper is to present a new
and more reliable significance test method for the Fourier
power spectra.

Published by Copernicus Publications on behalf of the European Geosciences Union and the American Geophysical Union.

http://creativecommons.org/licenses/by/3.0/


644 Z. Zhang and J. Moore: New significance test methods for Fourier analysis of geophysical time series

This paper is organized as follows: in Sect. 2, we explain
why Fourier power spectrum obtained by discrete Fourier
transform is distorted in the high frequency domain, so tradi-
tional significance tests are unreliable. In Sect. 3, we present
a new method to decompose the time series into two parts
and introduce the concept of modified Fourier power spec-
trum as a basis for new significance tests. In Sect. 4, since
for many geophysical time series, an appropriate background
noise or null hypothesis is red noise, we will give the modi-
fied Fourier power spectrum of red noise in a rigid statistics
framework. Finally, in Sect. 5, we will apply our signifi-
cance tests to analyze Arctic Oscillation and Nino3.4 indices
which are typical examples of climatic time series with, re-
spectively, little and considerable autocorrelation, to demon-
strate the strikingly different significance test results.

2 Distortion of Fourier power spectrum in the high
frequency domain

The continuous Fourier transform of the continuous time se-
riesf (t), t ∈ (−∞,∞) is defined by

f̂ (ω) =

∞∫
−∞

f (t)e−2πiωt dt, ω ∈ (−∞,∞).

and|f̂ (ω)|2 is called its Fourier power spectrum.
In practice, time series have finite duration, so we can only

deal with the time series from 0 toT . In order to compute
the Fourier transform, the time series is usually padded with
zeroes. In this way, the continuous Fourier transform off is
approximated by

f̂ (ω) ≈

∞∫
−∞

F(t)e−2πiωt dt, (1)

whereF is a discontinuous function att = 0 andt = T

F(t) =

{
f (t), 0≤ t ≤ T ,

0, t < 0, t > T .

Because of the discontinuity at the boundary pointst = 0 and
t = T , the Fourier transform obtained is distorted in the high
frequency domain.

In fact, it is also impossible to obtain the value off on
each point in[0,T ]. Now assume that we are given the dis-
cretized version of the continuous time seriesf sampled as
{nδt}N−1

n=0 with a step ofδt , whereT = Nδt So,f̂ at the point
k

Nδt
is approximated by the following sum:
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Figure 1: (Top) A simple time series: f(t) = sin( πt
3.2 ). (Middle) The adjusted time series obtained by removing

the line which connect two endpoints of the original time series. (Bottom) We do the odd extension for the
adjusted time series

the point k
Nδt is approximated by the following sum:

f̂(
k

Nδt
) ≈

Nδt∫

0

f(t) e−i 2kπ
Nδt t dt =

N−1∑
n=0

(n+1)δt∫

nδt

f(t) e−i 2kπ
Nδt t dt ≈ δt

N−1∑
n=0

f(nδt) e−i 2πkn
N , k = 0, 1, ..., N − 1.

From here, we see that {f̂( k
Nδt )}N−1

k=0 can be computed approximately by the discrete Fourier transform of the

discrete time series {f(nδt)}N−1
n=0 . However, by (2.1), we know that the Fourier transform obtained is distorted

in the high frequency domain.

3. Our decomposition method

In order to develop a new significance test to extract the intrinsic features from time series, in this section,

we will decompose the time series and introduce the concept of modified Fourier power spectrum.

3.1 Continuous time series

4

Fig. 1. (Top) A simple time series:f (t) = sin( πt
3.2). (Middle) The

adjusted time series obtained by removing the line which connect
two endpoints of the original time series. (Bottom) We do the odd
extension for the adjusted time series

f̂ ( k
Nδt

) ≈

T∫
0

f (t)e−i 2kπ
Nδt

t dt

=

N−1∑
n=0

(n+1)δt∫
nδt

f (t)e−i 2kπ
Nδt

t dt

≈ δt
N−1∑
n=0

f (nδt)e−i 2πkn
N , k = 0,1,...,N −1.

From here, we see that{f̂ ( k
Nδt

)}N−1
k=0 can be computed

approximately by the discrete Fourier transform of the
discrete time series{f (nδt)}N−1

n=0 . However, by Eq. (1), we
know that the Fourier transform obtained is distorted in the
high frequency domain.

3 Our decomposition method

In order to develop a new significance test to extract the in-
trinsic features from time series, in this section, we will de-
compose the time series and introduce the concept of modi-
fied Fourier power spectrum.

3.1 Continuous time series

Let f be a continuous time seriesf (t) on [0,T ] (see Fig. 1,
Top), we dividef into two parts
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f (t) = u(t)+v(t) (0≤ t ≤ T )

whereu(t) is a linear function such thatu(0) = f (0), u(T )=

f (T ). Denoteu(t) = at +b. Thena =
f (T )−f (0)

T
, b = f (0),

andv(0) = v(T ) = 0 (see Fig. 1, Middle). So we have

v(t) = f (t)−
f (T )−f (0)

T
t −f (0) (0≤ t ≤ T ).

Now we make the odd extension ofv (see Fig. 1, Bottom):

v◦(t) =

{
v(t), 0≤ t ≤ T ,

−v(−t), −T ≤ t < 0.

Again we make the 2T −periodic extension, we getv∗:

v∗(t +2nT ) = v◦(t) (t ∈ [−T ,T ], n ∈ Z).

By the following proposition, we can see that the above
approach can remove the discontinuities at the data boundary
very well. The proof of this proposition can be found in
Appendix A at the end of this paper.

Proposition 1. If the derivative off is continuous on
[0,T ], then the derivative ofv∗ is continuous on(−∞,∞).

Finally, we expandv∗(t) into the Fourier series

v∗(t) =

∞∑
k=−∞

cnei kπt
T

where the Fourier coefficientcn is computed by

cn =
1

2T

T∫
−T

v∗(t)e−i nπt
T dt (2)

Comparingf (t) with v∗(t), we find that inv∗(t), discon-
tinuities on data boundary are removed. We call|cn|

2 the
modified Fourier power spectrum of continuous time series
f (t).

Now we begin to simplify the formula (2):

cn =
1

2T

T∫
−T

v∗(t)cos
nπt

T
dt −

i

2T

T∫
−T

v∗(t)sin
nπt

T
dt

Sincev∗ is odd and cosnπt
T

is even, the first term on the right-
hand side of the above formula is zero. Again since sinnπt

T
is odd, we have

cn = −
i

T

T∫
0

v∗(t)sin
nπt

T
dt. (3)

3.2 Discrete time series

In practice, we are only given the samples of some continu-
ous time seriesf on [0,T ], i.e.

xk = f (kδt), k = 0,1,2,...,N (T = Nδt)

As for the continuous case, we decompose the time series
into

xk = uk +vk (k = 0,...,N)

such thatuk = ak + b (k = 0,...,N) andu0 = x0, uN = xN .
So we have

a =
xN −x0

N
, b = x0,

and

uk =
k

N
(xN −x0)+x0 (k = 0,...,N).

This implies that

xk =
k

N
(xN −x0)+x0+vk and v0 = vN = 0.

We make the odd extension of the sequence{vk}:

v◦

k =

{
vk, n = 0,...,N,

−v−k, n= −1,...,−N +1,

and then make the 2N−periodic extension

v∗

k+2nN = v◦

k k = 0,±1,...,±(N −1),N, n ∈ Z.

So{v∗

k } is a 2N−periodic odd sequence. Moreover,{v∗

k } are
the samples ofv∗(t) which has been defined in Sect. 3.1. In
other words,

v∗

k = v∗(kδt), k = 0,1,2,...,N

Numerically integrating Eq. (3), noticing thatT = Nδt ,
v∗(0) = 0, andv∗(T ) = 0, we obtain the relation between
{v∗

k } and the Fourier coefficients{cn} as follows:

cn = −
i

T

T∫
0

v∗(t)sin
nπt

T
dt ≈ −

i

N

N−1∑
k=1

v∗

k sin
knπ

N
. (4)

So we can define the modified Fourier power spectrum of
discrete time series{xn}

N
0 as

|
1

N

N−1∑
k=1

v∗

k sin
knπ

N
|
2. (5)
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4 The modified Fourier power spectrum of red noise

For many geophysical phenomena, an appropriate back-
ground is red noise (Mann and Lees, 1996; Ghil et al., 2002).
A simple model for red noise is the univariate lag-1 autore-
gressive [AR(1)] process{xn}

N
0 :

x0 = 0, xn = λxn−1+Zn (n = 1,...,N),

whereλ is a constant and called the AR(1) coefficient,|λ| <

1, and{Zn} are independent Gaussian random variables with
mean 0 and varianceσ 2.

If {xn}
N
1 are known, one can use the following formula

(Brockwell and Davis, 1991) to estimate the AR(1) coeffi-
cientλ and noise varianceσ 2.

λ =

1
N−1

N−1∑
i=1

(xi −x)(xi+1−x)

1
N

N∑
i=1

(xi −x)2

,

σ 2
=

1−λ2

N

N∑
i=1

(xi −x)2

wherex =
1
N

N∑
i=1

xi .

Denote the discrete Fourier transform of an AR(1) process
{xn}

N−1
0 by {fn}

N−1
0 . Torrence and Compo (1998) showed

that the Fourier power spectrum|fn|
2 is distributed as

σ̃ 2(1−λ2)

2N(1+λ2−2λcos2πn
N

)
χ2

2 (6)

where σ̃ 2 is the variance of time series andχ2
2 is the chi-

square distribution with two degrees of freedom. In tradi-
tional significance tests, one uses this distribution to extract
the intrinsic features of geophysical time series.

In order to satisfy the needs of our new significance tests,
we will give the distribution for the modified Fourier power
spectrum of AR(1) process in a rigid statistics framework.

From the definition of an AR(1) process, we havex0 = 0
andx1 = λx0+Z1 = Z1. Furthermore,

x2 = λx1+Z2 = λZ1+Z2

and

x3 = λ2Z1+λZ2+Z3.

In general, we have

xk =

k∑
l=1

λk−lZl .

Based on our decomposition method for discrete time se-
ries in Sect. 3.2, we have

xk = αk +βk (k = 0,1,...,N), where αk =
k

N
xN .

Therefore,

βk = xk −αk =

k∑
l=1

λk−lZl −
k

N

N∑
l=1

λN−lZl .

By Eq. (5), the modified Fourier power spectrum of AR(1)
process is|Yn|

2, where

Yn =
1

N

N−1∑
k=1

βk sin
nkπ

N
.

So

NYn =

N−1∑
k=1

k∑
l=1

λk−lZl sinnkπ
N

−

N−1∑
k=1

N∑
l=1

k
N

λN−lZl sinnkπ
N

=: In −Jn.

(7)

It is easy to check the following formulas:

N−1∑
k=1

(
k∑

l=1

ak,l

)
=

N−1∑
l=1

(
N−1∑
k=l

ak,l

)
and

N−1∑
k=1

(
N∑

l=1

bk,l

)
=

N∑
l=1

(
N−1∑
k=1

bk,l

)
.

Furthermore, we deduce that

In =

N−1∑
l=1

(
N−1∑
k=l

λk−lZl sinnkπ
N

)

=

N−1∑
l=1

λ−lZl

(
N−1∑
k=l

λk sinnkπ
N

)
,

Jn =

(
N∑

l=1

1

N
λN−lZl

)
·

(
N−1∑
k=1

k sin
nkπ

N

)
.

By sinnNπ
N

= 0, we can rewriteIn as

In =

N∑
l=1

λ−lZl

(
N∑

k=l

λk sin
nkπ

N

)
From this and Eq. (6), we get

NYn =

N∑
l=1

3n,lZl, (8)
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where

3n,l = λ−l cn,l −
λN−l

N
dn,

and

cn,l =

N∑
k=l

λk sin
nkπ

N
, dn =

N−1∑
k=1

k sin
nkπ

N
.

From this, we deduce that

N2Y 2
n =

N∑
l=1

32
n,lZ

2
l +

N∑
l,l′=1
l 6=l′

3n,l3n,l′ZlZl′ ,

and the mathematical expectation

N2E[Y 2
n ] =

N∑
l=1

32
n,lE[Z2

l ]+

N∑
l,l′=1
l 6=l′

3n,l3n,l′ E[ZlZl′ ]. (9)

Noticing that{Zl}
N
1 are independent Gaussian random vari-

ables with mean 0 and varianceσ 2, we get

E[Z2
l ] = σ 2 (l = 1,...,N),

E[ZlZk] = (E[Zl]) ·(E[Zk]) = 0(l,k = 1,...,N; l 6= k).

By Eq. (9), we have

N2E[Y 2
n ] = σ 2

N∑
l=1

32
n,l . (10)

For cn,l , we have

cn,l =

N∑
k=l

λk sinnkπ
N

= Im

(
N∑

k=l

λk e
inkπ
N

)

= Im

(
N∑

k=l

(
λei nπ

N

)k
)

= Im

(
−

λN+1(−1)ne
i nπ

N −λl e
i nlπ

N

1−λe
i nπ

N

)

=
λl sinnlπ

N
+λN+1(−1)n+1 sinnπ

N
−λl+1 sinn(l−1)π

N

1+λ2−2λcosnπ
N

.

(11)

Now we computedn. Since
N−1∑
k=1

eikt
=

1−eiNt

1−eit −1, we have

N−1∑
k=1

keikt
=

1
i

d
dt

(
1−eiNt

1−eit −1
)

=
−NeiNt

+(N−1)ei(N+1)t
+eit

(1−eit )2

= −
1+(N−1)eiNt

−Nei(N−1)t

4sin2 t
2

,

and so

Im

{
N−1∑
k=1

keikt

}
= −

(N −1)sinNt −N sin((N −1)t)

4sin2 t
2

.

Finally, we have

dn =

N−1∑
k=1

k sinnkπ
N

= Im

{
N−1∑
k=1

kei nkπ
N

}
=

N sin (N−1)nπ
N

4sin2 nπ
2N

.

(12)

By Eqs. (8)–(12), we know thatYn is a Gaussian random
variable with mean 0 and variance

var(Yn) = E[(Yn −E[Yn])
2
] =E[Y 2

n ]

=
σ 2

N2

N∑
l=1

(
λ−l cn,l −

λN−l

N
dn

)2

, (13)

where

cn,l =
λl sinnlπ

N
+λN+1(−1)n+1sinnπ

N
−λl+1sinn(l−1)π

N

1+λ2−2λcosnπ
N

dn =
N sin(N−1)nπ

N

4sin2 nπ
2N

. (14)

In the other words,Yn is distributed as

σ

N

√√√√ N∑
l=1

(
λ−l cn,l −

λN−l

N
dn

)2

Z

whereZ is a Gaussian random variable with mean 0 and vari-
ance 1.

Since the modified Fourier power spectrum of AR(1) pro-
cess is|Yn|

2, we have
Theorem 1. The modified Fourier power spectrum of an

AR(1) process is distributed as

σ 2

N2

N∑
l=1

(
λ−l cn,l −

λN−l

N
dn

)2

Z2. (15)

whereZ is a Gaussian random variable with mean 0 and vari-
ance 1, andcn,l , dn are stated in Eq. (14).

In Appendix B, we will simplify the formula (15) further.

5 Applications

In this section, based on Theorem 1 (or Theorem 2 in Ap-
pendix B), we will use our significance test to extract intrin-
sic features of time series from the Fourier power spectrum in
the high-frequency domain against a red noise Null Hypothe-
sis. First of all, we consider an artificial example. We embed
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Figure 2: (Top) AR1 process with AR1 coefficient 0.3 and noise variance 1. (Middle) a pure sinusoid of period
8.8. (Bottom) The sum of top signal and middle signal
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Figure 3: (Left) Fourier power spectrum is computed by discrete Fourier transform. (Right) Modified Fourier
power spectrum is computed by our method. The dashed line is 99% confidence red noise spectrum .
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Fig. 2. (Top) AR(1) process with AR(1) coefficient 0.3 and noise
variance 1. (Middle) a pure sinusoid of period 8.8. (Bottom) The
sum of top signal and middle signal
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Figure 2: (Top) AR1 process with AR1 coefficient 0.3 and noise variance 1. (Middle) a pure sinusoid of period
8.8. (Bottom) The sum of top signal and middle signal
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Figure 3: (Left) Fourier power spectrum is computed by discrete Fourier transform. (Right) Modified Fourier
power spectrum is computed by our method. The dashed line is 99% confidence red noise spectrum .
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Fig. 3. (Left) Fourier power spectrum is computed by discrete
Fourier transform. (Right) Modified Fourier power spectrum is
computed by our method. The dashed line is 99 % confidence red
noise spectrum .

a pure sinusoid of period 8.8 within an AR(1) process with
AR(1) coefficient 0.3 and noise variance 1 (see Fig. 2). We
will do significance tests by using traditional Fourier method
(Fig. 3, Left) and our method (Fig. 3, Right). From Fig. 3,
we see that our method discovers this pure sinusoid while the
traditional method does not.

Below we examine the winter Arctic Oscillation(AO) in-
dices (December–February 1851–1997) of Thompson and
Wallace (1998). The AO is a key aspect of climate variabil-
ity in the Northern Hemisphere. The AO index is defined as
the leading empirical orthogonal function (EOF) of Northern
Hemisphere sea level pressure anomalies pole ward of 20◦ N
(Thompson and Wallace, 1998), and characterized by an ex-
change of atmospheric mass between the Arctic and middle
latitudes. We first make a significance test for the Fourier
power spectrum of the AO index based on the traditional
method with a red noise Null Hypothesis. In Fig. 4 (Top), we
can see that only two peaks are well above the background
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Figure 4: (Top) Fourier power spectrum of AO indices is computed by discrete Fourier transform. (Bottom)
Modified Fourier power spectrum of AO indices is computed by our method. The dashed line is 95% confidence
red noise spectrum .

21

Fig. 4. (Top) Fourier power spectrum of AO indices is computed
by discrete Fourier transform. (Bottom) Modified Fourier power
spectrum of AO indices is computed by our method. The dashed
line is 95 % confidence red noise spectrum .

spectrum. When one applies the discrete Fourier transform
to analyze a finite-length AR(1) process, the data boundary
will distort its Fourier power spectrum, especially in the high
frequency domain. Now, based on Theorem 1 (or Theorem 2
in Appendix B), we use our significance test. Since disconti-
nuities at the data boundaries are removed, we find more sig-
nificant peaks at about 2.8, 4.3 and 5.7 yr periods well above
the background spectrum (see Fig. 4, Bottom). These peaks
are not significant in traditional tests.

Nino3.4 is used as a measure of the amplitude of the
El Nino Southern Oscillation (ENSO). The Nino3.4 index
is defined as the average monthly sea surface temperature
anomaly in the region bounded by 5◦ N to 5◦ S from 170◦ W
to 120◦ W. Unlike the winter AO annual index, the monthly
Nino3.4 time series has a high autocorrelation and hence
the significant level shows a strong trend with frequency.
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Figure 5: (Top) Fourier power spectrum of Nino3.4 indices is computed by discrete Fourier transform. (Bottom)
Modified Fourier power spectrum of Nino3.4 indices is computed by our method. The dashed line is 95%
confidence red noise spectrum .

22

Fig. 5. (Top) Fourier power spectrum of Nino3.4 indices is com-
puted by discrete Fourier transform. (Bottom) Modified Fourier
power spectrum of Nino3.4 indices is computed by our method. The
dashed line is 95 % confidence red noise spectrum .

Figure 5 shows the Fourier and modified Fourier power spec-
tra, and we find a significant peak at about 12 yr period in a
test against red noise. This peak is not significant in tradi-
tional tests. The main reason for the increased significance
is the removal of boundary effect in our new significance
test. Notice also that the modified Fourier power spectra has
higher resolution than traditional spectrum due to the odd ex-
tension made to the original time series. This high resolution
may result in sharper spectral peaks at any period which is
especially noticeable around 12 yr in Fig. 5.

The periodicities in the AO time series have been ex-
amined using wavelet coherence methods (Jevrejeva et al.,
2003), and Monte Carlo Singular Spectrum Analysis (MC-
SSA, Jevrejeva et al., 2004). These papers also discuss the
relationship between the AO and Nino3 time series (Nino3 is
closely related to Nino3.4 being defined as the monthly Sea

Surface Temperatures (SST) averaged over the eastern half of
the tropical Pacific (5◦ S–5◦ N, 90◦–150◦ W). The MCSSA
and wavelet coherence analyses revealed that periodic sig-
nals in the AO and Nino3 time series vary in over time, e.g.
AO exhibits significant power in the 3.5–5.7 yr band between
1935–1950, and power in the 12–14 yr band in the second
half of the record. In contrast the Fourier spectrum analy-
sis shows a simple result representing the whole time series
studied.

In general the strongest signals detected with MCSSA and
wavelets were at 2.2, 3.5, 5.7 and a broad band centered on
14 yr periods. Jevrejeva et al. (2003) discuss the phase dif-
ferences between these signals in various climatic time series
as a function of their geographic location. They found that
the signals in the 2.2–5.7 yr bands have short phase lags of
about 3 months between their location of origin (the tropical
Pacific, and the polar regions, implying a rapid transporta-
tion mechanism likely via the stratosphere as proposed by
Baldwin and Dunkerton (2001). In contrast the 13.9 yr sig-
nal has a phase lag of about 0.7 yr between the Nino3.4 and
AO series, and a further year between the atmospheric record
recorded in the Southern Oscillation Index and Nino3.4.
These much slower transport patterns can also be tracked in
global sea surface temperature fields (Jevrejeva et al., 2004),
and points to a oceanic transport mechanism from tropics to
both polar regions.

The results of the Fourier significance analysis presented
in Figs. 4 and 5 show similar features as described in the
wavelet and MCSSA analyses. There are a broad band of
signals from 2.2–5.7 yr that are associated with ENSO vari-
ability in the Pacific region – with the 5.7 yr signal detected
as significant in our new test exactly coinciding with features
in the MCSSA (Jevrejeva et al., 2004) and wavelet analysis
(Jevrejeva et al., 2003). These signals propagate globally as
a forced response to the slow warming of tropical oceans.
We find a 12 yr peak in the Nino3.4 series but the same pe-
riod is significant in AO only in the second half of that time
series (and only in our new significance test not the tradi-
tional one). It is likely that this 12 yr signal corresponds to
the 13.9 yr period peak discussed above. The difference in
periodicity of the peak is perhaps that the MCSSA approach
is a time domain analysis, and does not rely on sinusoidal
basis functions. The MCSSA analysis also reveals that the
signal is growing over time, especially in the 20th century
while it is insignificant in the 19th century. There are also
some differences in the periodicity of the high frequency sig-
nals in Nino3.4 between methods and probably reflect choice
of parameters such as the embedding dimension in the MC-
SSA analysis (Ghil et al., 2002) – which may lead to a 2.8 yr
signal being resolved as a 2.2 yr and 3.5 yr signals. We also
note that in the traditional significance test finds a peak at
5.4 yr in Nino3.4 (Fig. 5), while the new test reveals 2 peaks
at 5.5 and 5.7 yr.
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6 Conclusions

We present a novel way of modifying the traditional Fourier
transform to remove the impact of discontinuity at the data
boundaries. We show that when the modified Fourier decom-
position is made, we can calculate significance levels against
a red noise Null Hypothesis in a rigid statistics framework.
Tests on real time series show important differences in signif-
icance levels compared with traditional methods. This sug-
gests that the Fourier spectra produced commonly in geo-
physical or climatic time series are suspect. In many time
series that may reflect on-going change, such as climatic se-
ries, the method we suggest has clear advantages over tra-
ditional Fourier analysis since the information at the most
recent times, i.e. the data boundary is preserved. It is worth
noticing that in many time series of practical importance such
as the AO or Nino3.4, the differences in significance levels
include multi-year and decadal frequencies. Such multi-year
and decadal variability is the target of considerable current
research, and therefore establishing the presence of signifi-
cant oscillatory power in these bands is highly relevant.

Appendix A

Proof of Proposition 1

Since the derivative off is continuous on the interval[0,T ],
from the definition ofv∗, we know that in order to prove the
continuity of the derivative ofv∗ on (−∞,∞), we only need
to prove that the derivative ofv∗ is continuous at the points
0 andT . Because these two arguments are similar, we only
prove that the derivative ofv∗ is continuous at 0.

First we prove that the derivative ofv∗(t) exists at 0.
By v◦(t) = v(t), t ∈ [0,T ]. We consider the right deriva-

tive of v◦ at the endpoint 0,

lim
t→0
t>0

v◦(t)−v◦(0)

t −0
= lim

t→0
t>0

v(t)−v(0)

t −0
= v′(0). (A1)

By v◦(t) = −v(−t), t ∈ [−T ,0] andv◦(0) = v(0) = 0, we
obtain that the left derivative ofv◦ at the endpoint 0 is

lim
t→0
t<0

v◦(t)−v◦(0)

t −0
= lim

t→0
t<0

v(0)−v(−t)

0−(−t)
.

Let t ′ = −t . Then, fort → 0, t < 0, we havet ′ → 0, t ′ > 0.
So we obtain that

lim
t→0
t<0

v◦(t)−v◦(0)

t −0
= lim

t ′→0
t ′>0

v(0)−v(t ′)

0− t ′
= v′(0). (A2)

Combining Eq. (A1) with Eq. (A2), we know that the deriva-
tive of v◦ exists at the endpoint 0 and

(v◦)′(0) = v′(0). (A3)

By v∗(t) = v◦(t), t ∈ [−T ,T ], we know that the derivative
of v∗ exists at 0.

Next we prove that the derivative ofv∗ is continuous at 0.
Fromv◦(t) = −v(−t), t ∈ [−T ,0], we have

(v◦)′(t) = v′(−t), t ∈ (−T ,0).

This implies by Eq. (A3) that

lim
t→0
t<0

(v◦)′(t) = lim
t→0
t<0

v′(−t) = lim
t→0
t>0

v′(t) = v′(0) = (v◦)′(0).

On the other hand, byv◦(t) = v(t), t ∈ [0,T ], we have

lim
t→0
t>0

(v◦)′(t) = lim
t→0
t>0

v′(t) = v′(0) = (v◦)′(0).

From this, we get lim
t→0

(v◦)′(t) = (v◦)′(0), i.e., the derivative

of v◦(t) is continuous att = 0. Therefore, we know that the
derivative ofv∗(t) is continuous at 0. Proposition 1 is proved.

Appendix B

Further simplification of Formula (15)

We will simplify the sum in Eq. (15). Denote

J =
σ 2

N2

N∑
l=1

(
λ−l cn,l −

λN−l

N
dn

)2

. (B1)

From this, we get

σ−2N2J =

N∑
l=1

λ−2l c2
n,l +

λ2N

N2

(
N∑

l=1
λ−2l

)
d2
n

−
2λN

N

(
N∑

l=1
λ−2l cn,l

)
dn

= : H1+H2−H3.

(B2)

From Eq. (11), we see that

λ−2l c2
n,l(1+λ2

−2λcos
nπ

N
)2

= sin2 nlπ
N

+λ−2lλ2N+2sin2 nπ
N

+λ2sin2 n(l−1)π
N

+ 2(−1)n+1λN+1sinnπ
N

(
λ−l sinnlπ

N

)
− 2λsinnlπ

N
sinn(l−1)π

N

+ 2(−1)nλN+2sinnπ
N

(
λ−l sinn(l−1)π

N

)
.

For convenience, denote

gn(µ,ν,ζ ) =

N∑
l=1

λ−µl sin
n(l−ν)π

N
sin

n(l−ζ )π

N
,
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hn(µ,ν)=

N∑
l=1

λ−µl sin
n(l−ν)π

N
. (B3)

Then we have

H1 = (1+λ2
−2λcosnπ

N
)−2(gn(0,0,0)

+
λ2N+2

−λ2

λ2−1
sin2 nπ

N
+λ2gn(0,1,1)

+ 2(−1)n+1λN+1sinnπ
N

hn(1,0)−2λgn(0,0,1)

+ 2(−1)nλN+2sinnπ
N

hn(1,1)).

(B4)

By Eqs. (B2) and (12), we get

H2 =
λ2N

N2

(
N∑

l=1

λ−2l

)
d2
n =

(λ2N
−1)sin2 (N−1)nπ

N

16(λ2−1)sin4 nπ
2N

. (B5)

By (11), we get(
N∑

l=1

λ−2l cn,l

)
(1+λ2

−2λcos
nπ

N
)

=

N∑
l=1

λ−l sin
nlπ

N
+(−1)n+1λN+1sin

nπ

N

(
N∑

l=1

λ−2l

)

−

N∑
l=1

λ−l+1sin
n(l−1)π

N
.

= hn(1,0)+(−1)n+1λN+1
−λ−N+1

λ2−1
sin

nπ

N
−λhn(1,1).

By Eqs. (12) and (B2), we get

H3 =
λN sin (N−1)nπ

N

2(1+λ2−2λcosnπ
N

)sin2 nπ
2N

(hn(1,0)

+ (−1)n+1 λN+1
−λ−N+1

λ2−1
sinnπ

N

− λhn(1,1)t).

(B6)

Finally, we computegn(µ,ν,ζ ) andhn(µ,ν) in Eq. (B3).
First we considergn(µ,ν,ζ ). We see that

−2gn(µ,ν,ζ ) =

N∑
l=1

λ−µl(cos(2ln−nν−nζ )π
N

−cosn(ζ−ν)π
N

)

= Re

{
e−i

n(ν+ζ )π
N

N∑
l=1

(λ−µei 2nπ
N )l

}

− cosn(ζ−ν)π
N

N∑
l=1

λ−µl

= : S1−S2,

(B7)

ForS2, it is clear that

S2 =
λ−µ

−λ−µ(N+1)

1−λ−µ
cos

n(ζ −ν)π

N
.

ForS1, sincee2πin
= 1, we have

N∑
l=1

(λ−µei 2nπ
N )l =

λ−µei 2nπ
N (1−λ−µN )

1−λ−µei 2nπ
N

Furthermore, we get

S1 = λ−µ(1−λ−µN )Re

{
e
i

2nπ−n(ν+ζ )π
N

1−λ−µe
i 2nπ

N

}

= λ−µ(1−λ−µN )Re

{
e
i

2nπ−n(ν+ζ )π
N (1−λ−µe

−i 2nπ
N )

1+λ−2µ−2λ−µcos2nπ
N

}

=
λ−µ(1−λ−µN )(cos2nπ−n(ν+ζ )π

N
−λ−µcosn(ν+ζ )π

N
)

1+λ−2µ−2λ−µcos2nπ
N

(B8)

From this and Eq. (B7), we have

gn(µ,ν,ζ )

= −
λ−µ(1−λ−µN )(cos2nπ−n(ν+ζ )π

N
−λ−µcosn(ν+ζ )π

N
)

2+2λ−2µ −4λ−µcos2nπ
N

+
λ−µ

−λ−µ(N+1)

2−2λ−µ
cos

n(ζ −ν)π

N
(B9)

Next, we computehn(µ,ν).

hn(µ,ν) =

N∑
l=1

λ−µl sinn(l−ν)π
N

= Im

{
N∑

l=1
λ−µl ei

n(l−ν)π
N

}

= Im

{
e−i nνπ

N

(
λ−µe

i nπ
N (1−λ−µN (−1)n)

1−λ−µe
i nπ

N

)}

=
1−λ−µN (−1)n

λµ Im

{
e
i
n(1−ν)π

N

1−λ−µe
i nπ

N

}

=
1−λ−µN (−1)n

λµ Im

{
e
i
n(1−ν)π

N (1−λ−µe
−i nπ

N )

1+λ−2µ−2λ−µcosnπ
N

}

=
λ−µ(1−λ−µN (−1)n)(sinn(1−ν)π

N
+λ−µ sinnνπ

N
)

1+λ−2µ−2λ−µcosnπ
N

.

(B10)

By Eqs. (B1)–(B6), we get the following
Theorem 2. The modified Fourier power spectrum of an

AR(1) process is distributed as

σ 2

N2
(H1+H2−H3)Z2,
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whereZ is a Gaussian random variable with mean 0 and vari-
ance 1, and

H1 = (1+λ2
−2λcosnπ

N
)−2(gn(0,0,0)

+
λ2N+2

−λ2

λ2−1
sin2 nπ

N
+λ2gn(0,1,1)

+ 2(−1)n+1λN+1sinnπ
N

hn(1,0)

− 2λgn(0,0,1)+2(−1)nλN+2sinnπ
N

hn(1,1)),

H2 =
(λ2N

−1)sin2 (N−1)nπ
N

16(λ2−1)sin4 nπ
2N

,

H3 =
λN sin(N−1)nπ

N

2(1+λ2−2λcosnπ
N

)sin2 nπ
2N

×

(
hn(1,0)+

(−1)n+1(λN+1
−λ−N+1)sinnπ

N

λ2−1
−λhn(1,1)

)
.

andgn(µ,ν,ζ ), hn(µ,ν) are stated in Eqs. (B9) and (B10),
respectively.

Remark. When the length of geophysical time series is
large, we suggest to use Theorem 2 instead of Theorem 1 to
do a significance test.
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