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Abstract When one applies the wavelet transform to analyze finite-length time series, discontinuities at the data
boundaries will distort its wavelet power spectrum in some regions which are defined as a wavelength-dependent
cone of influence (COI). In the COI, significance tests are unreliable. At the same time, as many time series are
short and noisy, the COI is a serious limitation in wavelet analysis of time series. In this paper, we will give a
method to reduce boundary effects and discover significant frequencies in the COI. After that, we will apply our
method to analyze Greenland winter temperature and Baltic sea ice. The new method makes use of line removal
and odd extension of the time series. This causes the derivative of the series to be continuous (unlike the case
for other padding methods). This will give the most reasonable padding methodology if the time series being
analyzed has red noise characteristics.

Keywords Wavelet power spectrum, significance testing, Greenland winter temperature, Baltic

sea ice

Citation: Zhang Z H, Moore J C. Improved significance testing of wavelet power spectrum near data boundaries as

applied to polar research. Adv Polar Sci, 2011, 22: 192–198, doi: 10.3724/SP.J.1085.2011.00192

0 Introduction

In the early 1980s, Morlet introduced the wavelet trans-

form and applied it in geophysics. After two decades

of fast development, the wavelet method has become

routine[1]. The continuous wavelet transform possesses

the ability to construct a time-frequency representation

of a time series that offers very good time and frequency

localization, so wavelet transforms can analyze local-

ized intermittent periodicities of geophysical time series.

However, physical interpretation of the signals requires

plausible statistical significance testing. For many geo-

physical time series, an appropriate background noise or

null hypothesis is red noise, so in order to distinguish

their intrinsic feature from red noise, one needs to use a

significance test.

In practice, since one does not know the information

of the time series in the past or in the future, the time

series is usually padded with zeroes and then its wavelet

power spectrum is computed. After that, a significance

test may find significant regions. However, discontinu-

ities at data boundaries will distort the wavelet

power spectrum in some regions which are defined as a
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wavelength-dependent cone of influence (COI), so the sig-

nificance test will be unreliable in the COI. Moreover,

since many geophysical time series are short and noisy,

the COI will be a serious limitation in wavelet analy-

sis of time series. Many scientists have presented var-

ious methods to deal with boundary effects in wavelet

analysis: Foster[2] and Frick et al.[3] constructed a new

wavelet near the gap to deal with the wavelet trans-

form of unevenly sampled time series, while Sweldens[4]

presented the “lifting scheme” algorithm of constructing

new wavelet bases. Johnson[5] modified the traditional

wavelet transform by adapting wavelets through renor-

malization and modifying the shape of the analyzing win-

dow. Unfortunately, their methods cannot be applied to

do significance tests and extract instinct features in the

COI of wavelet power spectrum. In our paper, instead of

defining a new wavelet, we suggest a simple approach to

the improvement to significance testing of wavelet power

spectrum near data boundaries. In Section 1, we will re-

view the cone of influence and significance test of wavelet

power spectrum. In Section 2, we give a method to re-

duce boundary effect. In Section 3, we apply our method

to research Greenland winter temperature and Baltic sea

ice.

1 Cone of influence and significance test

of wavelet power spectrum

In geophysics, due to the similar resolution in both time

and frequency, the most popular wavelet is the Morlet

wavelet[1] whose representation is

ψ0(t) = π−1/4eiω0te−t2/2 (1)

where ω0 is the nondimensional frequency. In applica-

tion, one often takes ω0=6. Throughout this paper, the

wavelet we use is the Morlet wavelet. Let f be a con-

tinuous time series. Then the wavelet transform of f is

defined as[6]

Wf (a, b) =
1√
a

∞∫

−∞

f(t)ψ0(
t− b
a

)dt (a > 0, b ∈ R) (2)

where the overbar denotes a complex conjugate. We call

|Wf (a, b)|2 the wavelet power spectrum of f . For the

discrete time series {xn}N−1
0 of time step δt, its wavelet

transform is defined as

Wn(s) =

√
δt

s

N−1∑

n′=0

x′nψ0[
(n′ − n)δt

s
] (3)

We call |Wn(s)|2 wavelet power spectrum of {xn}N−1
0 .

The wavelet transform is very useful for time series anal-

ysis where smooth, continuous variations in wavelet am-

plitude are expected.

Liu et al.[7] believed that there existed some bias in

wavelet power spectrum and adjusted it by dividing by

the corresponding scale. But the significant regions in

the wavelet power spectrum will not be affected by using

Liu et al’s rectification algorithm if both the signal and

noise background are treated the same.

1.1 Cone of influence

In the real world, since we do not have information on

the time series in the past or in the future, we only can

deal with the time series of finite length from T1 to T2.

In order to compute its wavelet transform, the simplest

algorithm is to pad the time series with zeroes and then

use the following approximation

Wf (a, b) =
1√
a

∞∫

−∞

f(t)ψ0

( t− b
a

)
dt

≈ 1√
a

∞∫

−∞

F (t)ψ0

( t− b
a

)
dt =WF (a, b) (4)

where

F (t) =

{
f(t), t ∈ [T1, T2],

0, otherwise
(5)

In this formula, we use the wavelet transform of F to

approximate to that of f . Because of discontinuities at

the endpoints, errors will occur at the beginning and end

of the wavelet transform. The COI is the region of the

wavelet transform in which edge effects become impor-

tant and is defined usually as the e-folding time for the

autocorrelation of wavelet transform at each scale[1]. So

the values of the wavelet transform (or the wavelet power

spectrum) obtained in the COI are distorted.

1.2 Background noise and significance test

For many geophysical phenomena, the plausible null hy-

pothesis to test against is red noise[8]. A simple model

for red noise is the univariate lag-1 autoregressive [AR(1)]

process as follows:

x0 = 0, xn+1 = λxn+ ∈n+1, n = 1, 2, 3, . . . , N − 1 (6)
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where λ is a constant and εn is independent Gaussian

white noise with mean 0 and variance σ2. Torrence

and Compo[1] showed that, for the Morlet wavelet, the

wavelet power spectrum |Wn(s)|2 of an AR(1) process

satisfies that

|Wn(s)|2
σ̃2

is distributed as
1

2
Pkχ

2
2 (7)

where σ̃2 is the variance of time series, χ2
2 is the dis-

tribution of the sum of the squares of two independent

standard normal random variables,

Pk =
1− λ2

1 + λ2 − 2λcos(2πk/N)
(8)

and k is the Fourier frequency corresponding to the

wavelet scale s. For the Morlet wavelet (see formula

(1)), k =
N(ω0 +

√
2 + ω2

0)

4πs
. If we take ω0=6, then

k =
N

1.03s
.

For a typical geophysical time series, If a region G

is such that the values of the wavelet power spectrum

on G are all outside the α% confidence interval of the

distribution for wavelet power spectrum of an AR(1) red

noise, then we call G a significant region. In geophysical

research, one always takes α =90 or 95.

Many statistical tests assume that the probability

density function (pdf) is close to normal. Before one uses

the wavelet transform to analyze typical geophysical time

series, one often transforms the original time series such

that the pdf of the transformed data is normal[9−10]. A

practical way of doing this is by taking the inverse normal

cumulative distribution function (cdf). The main reason

for doing it is because otherwise the normally distributed

red noise null hypothesis we use is wrong. Further the

AR(1) estimators can be quite poor at dealing with non-

normal data. So, if the data are not normalized, then

the obtained significant regions will be misleading sim-

ply because the null-hypothesis can be trivially rejected.

2 Reducing the boundary effect

In order to reduce the data boundary effect and obtain

the better wavelet power spectrum in the COI, seve-

ral algorithms have been tried previously. The first

algorithm[11] is to pad the time series on each endpoint

with zeroes. The algorithm artificially creates discon-

tinuities at the endpoints. The second algorithm is

“cosine damping”[11] which preprocesses the time series

f(t), t ∈ [T1, T2] as follow

g(t) = f(t)× [1− cos2
( t− T1

T2 − T1
π
)
] (9)

It is clear that at the endpoints, g(T1) = g(T2)=0. Al-

though this method overcomes the boundary effect, at

the same time, we lose almost all the information from

the wavelet power spectrum at the endpoints. This is

often an unacceptable artifact. The third algorithm is

even symmetric extension[11]. This algorithm guarantees

that the signal is continuous at the endpoints. However,

Meyers et al.[11] indicated that it has the disadvantage of

artificially creating discontinuities in the first derivative

at the endpoints.

Now, we will give a new extension algorithm to re-

move boundary effect in wavelet power spectra. The ad-

vantage of our algorithm is that the first derivatives of

extended time series at the endpoints are still continu-

ous. Let a function f(t) be defined on [T1, T2].

Step 1. We divide into two parts. The first

part is a segment line joining two points (T1, f(T1)) and

(T2, f(T2))

u(t) =
f(T2)− f(T1)

T2 − T1
(t− T1) + f(T1) (10)

The second part is

v(t) = f(t)− u(t) (11)

From here, we know that

v(T1) = v(T2) = 0 (12)

Step 2. We do the odd extension for v:

vodd(t) = v(t), t ∈ [T1, T2] (13)

Vodd(t) = −v(2T1 − t), t ∈ [2T1 − T2, T1] (14)

Step 3. We do the periodic extension with period

2(T2 − T1) for vodd(t), i. e.,

v∗(t) = vodd(t), t ∈ [2T1 − T2, T2] (15)

v∗(t+ 2k(T2 − T1)) = v∗(t),

t ∈ [2T1 − T2, T2], k = ±1,±2, . . . (16)

Step 4. We do the wavelet transform for v∗ as

Wv∗(a, b) =
1√
a

∞∫

−∞

v∗(t)ψ0

( t− b
a

)
dt (17)
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where ψ0 is the Morlet wavelet.

Below we give two propositions on our method.

Proposition 1. In (17), for any polynomial h(t) =

ct+ d of degree one, we have Wh(a, b) ≈ 0.

Proof. The Morlet wavelet ψ0 has one vanishing

moment approximately and the error is very small, then
∞∫

−∞

ψ(t)dt ≈ 0 and
∞∫

−∞

tψ(t)dt ≈ 0. So

Wh(a, b) =
1√
a

∞∫

−∞

(ct+ d)ψ0

( t− b
a

)
dt

=
√
a

∞∫

−∞

[c(at+ b) + d]ψ0(t)dt ≈ 0 (18)

Remark 1. For a wavelet with vanishing moments

up to some power p, the corresponding wavelet transform

of a polynomial of order p is zero.

Proposition 2. Let a function f(t) be defined on

[T1, T2] and v
∗(t) be defined in Step 3. If the derivative

f ′(t) is continuous on [T1, T2], then the derivative v∗
′

(t)

is continuous on (−∞,∞).

Proof. Since f ′ is continuous on the interval

[T1, T2], from the construction of v∗, we know that in

order to prove the continuity of the derivative of v∗ on

(−∞,∞), we only need to prove that the derivative of v∗

is continuous at the points T1 and T2. By the similarity

of arguments, now we consider the point T1.

First we prove that the derivative of v∗ exists at T1.

By Step 2, vodd(t) = v(t), t ∈ [T1, T2]. We consider the

right derivative of vodd at the endpoint T1,

lim
t→T1+

vodd(t)− vodd(T1)

t− T1
=

lim
t→T1+

v(t)− v(T1)

t− T1
= v′(T1) (19)

By Step 2 and Step 1,

vodd(t) = −v(2T1 − t), t ∈ [2T1 − T2, T1] (20)

and vodd(T1) = v(T1) = 0. Considering the left derivative

of vodd at the endpoint T1, we obtain that

lim
t→T1−

vodd(t)− vodd(T1)

t− T1
=

lim
t→T1−

v(T1)− v(2T1 − t)
T1 − (2T1 − t)

(21)

Let t′ = 2T1 − t. Then, for t → T1, t < T1, we have

t′ → T1, t
′ > T1. So we obtain that

lim
t→T1−

vodd(t)− vodd(T1)

t− T1
=

lim
t′→T1+

v(T1)− v(t′)
T1 − t′

= v′(T1) (22)

Combining (19) with (22), we know that the derivative

of vodd exists at the endpoint T1 and

v′odd(T1) = v′(T1) (23)

By Step 3, v∗(t) = vodd(t), t ∈ [2T1 − T2, T2] and

2T1 − T2 < T1 < T2, we know that the derivative of

v∗ exists at T1.

Next we prove that the derivative of v∗ is continuous

at T1. From vodd(t) = −v(2T1 − t), t ∈ [2T1 − T2, T1], we

have

v′odd(t) = v′(2T1 − t), t ∈ [2T1 − T2, T1] (24)

This implies that

lim
t→T1−

v′odd(t) = lim
t→T1−

v′(2T1 − t) =

lim
t→T1+

v′(t) = v′(T1) = v′odd(T1) (25)

On the other hand, by vodd(t) = v(t), t ∈ [T1, T2], we

have

lim
t→T1+

v′odd(t) = lim
t→T1+

v′(t) = v′(T1) = v′odd(T1) (26)

By (25) and (26), we get lim
t→T1−

v′odd(t) = v′odd(T1), i.e.,

v′odd(t) is continuous at t = T1. By Step 3, we know that

the derivative of v∗(t) is continuous at T1. Proposition 2

is proved.

From Proposition 1, we know that although we re-

move a linear function from the original signal, the cor-

responding wavelet power spectrum will not be changed.

By Proposition 2, our algorithm “linear removal+odd

extension” guarantees that the derivatives of the time

series are continuous at the endpoints. So our algo-

rithm can overcome boundary effect better than “zero-

padding” and “even extension (even-padding)”.

3 Application

We will examine Southern Greenland winter temperature

index and Baltic Sea ice index with the help of our al-

gorithm, i.e., we will make a significance test against the

null hypothesis of climate noise and determine significant

regions near data boundaries.
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3.1 Southern Greenland winter temperature

index

The isotopic ratio δ18O measured in ice cores can be used

as a temperature proxy because of the temperature de-

pendent fractionation of oxygen isotopes, that takes place

while moisture travels from its evaporation area to the

Greenland ice sheet. Vinther et al.[12] analyzed ice core

data from 7 different drill sites in the southern half of

Greenland in order to get Southern Greenland winter

temperature indices. We apply our method to analyze

the wavelet power spectrum of this time series. So, first

of all, we transform the original data such that the pdf

of the transformed data is normal (Figure 1). In order

to show the performance of our method, we consider the

middle part of the full temperature indices. The wavelet

power spectrum of the middle part can be computed by

using full length data (Figure 2a). Now we only use

the middle part to compute its wavelet power spectrum

by “zero-padding”, “even extension”, and our algorithm

(Figures 2b–2d). In the COI, the significant region indi-

cated by our method is more closer to the real significant

region than that by “zero-padding” or “even extension”.

Figure 1 Thenormalized Southern Greenland winter tem-

perature indices.

Figure 2 Wavelet power spectrum of Southern Greenland winter temperature indices is obtained by using: (a) full-length

data, (b) “zero-padding” method, (c) “even-padding” method, and (d) our method. The black contour designates the 90%

significance level against red noise, and COI is just the region below the thick line.
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Figure 3 The normalized winter BMI percentile time se-

ries.

3.2 Baltic Sea ice index

The maximum extent of the Baltic Sea ice (BMI) is char-

acterized by a bi-modal pdf with maximum likelihoods

near 10 and 100% ice covered[13]. We transform the orig-

inal data such that the pdf of the transformed data is

normal (Figure 3). We take the 1765–1870 part of the

full-length BMI indices. It is obvious that we can obtain

the true wavelet power spectrum and significant region

of this 105-year data by using full length data. The true

wavelet power spectrum of the 105-year data is shown

in Figure 4a. Now we use the 105-year data to compute

the wavelet power spectrum by using three approaches:

“zero-padding”, “even extension” and our method (Fig-

ures 4b–4d). If we compare the shapes of two significant

regions on the top right corner of wavelet power spec-

trum, it is obvious that the significant region obtained

by our extension algorithm is closer to true significant

region than that obtained by “zero-padding” or “even

extension” (Figure 4).

4 Summary and conclusion

Discontinuities at the data boundaries cause the

Figure 4 Wavelet power spectrum of BMI indices is obtained by using: (a) full-length data, (b) “zero-padding” method,

(c) “even-padding” method, and (d) our method. The black contour designates the 95% significance level against red noise,

and COI is just the region below the thick line.
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distortion of its wavelet power spectrum. The even-

extension method guarantees that the time series is con-

tinuous at the endpoints. However, the first derivatives

on the endpoints are still discontinuous. In contrast with

the even-extension method, our “linear removal+odd ex-

tension” method has a continuous first derivative, so

our algorithm can overcome boundary effect better than

“even extension”. The desirable quality of continuous

time derivative means that our “linear removal + odd ex-

tension” is a good choice of padding for time series that

have significant first order autoregressive components, or

exhibit persistence (such as a Markov or fractional Gaus-

sian process).

We tested the new method of “linear removal+odd

extension” with two different real-world climate proxies.

One of which was unusually non-Normal in its pdf. We

extracted the middle parts of these times series and com-

pared different methods of testing significance levels near

the data boundaries with the known significant regions

from the complete time series. It is clear that the new

method produces more reliable estimations of the signifi-

cant regions of the wavelet power spectrum than existing

alternatives. We therefore commend this new method as

worthwhile.

No method can forecast future behavior completely

accurately, especially if the considered time series is re-

lated to climate which is non-stationary and potentially

non-linear. As a general rule, we recommend using ad-

ditional techniques to confirm possibly marginally sig-

nificant features affected by the COI, such as singular

spectrum analysis[14] or Granger causality[15] that may

have different advantages and shortcomings.
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