Wavelet-lag regression analysis of
Atlantic tropical cyclones and snow cover
and their dependence on ENSO and
Atlantic thermohaline variability.

John Moore,* Aslak Grinsted"? and Svetlana Jevrejeva®

1 Arctic Centre, University of Lapland, 96101 Rovaniemi, Finland,
jmoore@ulapland.fi

2 Department of Geophysics, P.O. Box 3000, FIN-90014, University
of Oulu, Finland ag@glaciology.net

® Proudman Oceanographic Laboratory, Liverpool, UK,
sveta@pol.ac.uk

Abstract We discuss anovel wavelet-lag coherence method to
study of cause-and-effect relations over alarge space of timescales,
phase lags and periods. We use 135 years of observational recordsto
demonstrate how sea-surface temperature, sea-level pressure and cy-
clone numbers are linked. We examine the statistical properties of
the time series and test how departure from Normality affects results
found using the method. We a so examine how historical inaccuracy
in counting tropical cyclone numbers could influence the findings.
Robustly we find that SST and cyclonesin anegative feedback loop,
where rising SST causes increased numbers of cyclones, which re-
duce SST. Thisis statistically most significant at decadal and not at
longer periods. Only at periods of about 30 years do significant dif-
ferences arise in using recently proposed corrections to cyclone
numbers, and forcing the empirical distribution of cyclone numbers
to be Normal. This could be incorrectly interpreted as support for a
long period Atlantic Multidecadal Oscillation, whereas it actually re-
flects the time-varying bias functions applied to the observations.
There is evidence of some linkage between Northern hemisphere
snow cover and cyclone numbers, however this seems to be dueto a
common causative relationship between the known tropical cyclone
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drivers of ENSO and decadal scale North Atlantic ocean-
atmospheric circulation systems.

1 Introduction

Increases in Atlantic tropical cyclone intensity have been
related to increases in Atlantic sea surface temperature
(SST), and Elsner (2007) has shown that it is likely to be
rising global temperatures that drive the increases in both
cyclone intensity and Atlantic SST. However, the nature of
the climate relationships to tropical cyclones is likely to be
complex, and certainly includes oceanic and atmospheric
circulation patterns that operate on ocean basic scales. Sig-
nificant but weak statistical correlations exist between the
Atlantic hurricane source region and the northern Atlantic
(Goldenberg et al 2001) and tropical Pacific warm pools
(Wang et al. 2006). Several authors have used these statisti-
cal relationships to produce predictive models of Atlantic
hurricane season intensity and tropical storm numbers (e.g.
Elsner and Jagger, 2006; Sabbatelli and Mann, 2007). In
contrast with this kind of approach, here we attempt to un-
derstand relationships between the large scale driving
mechanisms and Atlantic tropical storm activity by examin-
ing the behaviour of the various multi-year cycles that exist
in the time series. Decadal cycles are fairly ubiquitous
across the planet, and are therefore persuasive of a global-
scale climate mechanism (Jevrejeva, Moore and Grinsted,
2004; Moron, Vautard and Ghil 1998; Dijkstra and Ghil
2005). The main features of the planet? climate are the
ENSO and the polar annular modes, which is determined by
the strength of the polar stratospheric vortex (Thompson
and Wallace 1998). An index of Atlantic climate variability
that is often (but not always —Jevrejeva and Moore 2001)
closely related to the arctic annual mode (the Arctic Oscilla-
tion) is the North Atlantic Oscillation (NAO). Unlike the
purely polar defined annular modes, the NAO is linked to
the tropics via its interaction with the Atlantic thermohaline
circulation, most particularly through the modulation of the
Gulf Stream meanderings at 7.8 year periods (Dijkstra and
Ghil 2005). This is significant as Elsner, Kara and Owens



(1999), noticed a 7.8 year periodicity in hurricane fre-
quency.

Moore, Grinsted and Jevrejeva (2008) showed that ro-
bust linkages that may imply causal relationships between
global sea-surface temperature (SST), pressure fields and
cyclones exist. However, challenging the identification of
such linkages are both the uncertainties in long-term obser-
vational records and the robustness of the advanced statisti-
cal methods designed specifically to extract possibly causal
relationships that may be non-stationary and develop over
many years. Here we examine how the results from wavelet
lag regression are to perturbation of 135-year observational
record and demonstrate cyclone numbers are linked on dif-
ferent time scales with high latitude processes that also de-
termine snow cover in the Northern Hemisphere.

2 Data

In contrast with modern satellite-era observations of hurri-
cane wind speeds and atmospheric physical variables, num-
bers of Atlantic tropical cyclones per year (TC), has been
collected since at least 1851. They are defined simply as
non-frontal, synoptic-scale cyclones over tropical or sub-
tropical waters (Jarvinen, Neumann, and Davis, 2005). TC
representing cyclone count and Power Dissipation Index
(PDI) (Emanuel 2005; Landsea 2005), an index of hurricane
destructive power available from 1944-2004 are correlated
at 0.68. Recent modifications to TC have been suggested
(Landsea (2007; Mann et al., 2007), however testing our re-
sults with the proposed time-varying bias added to TC
makes only very slight differences to our results. For exam-
ple the correlation coefficient between PDI and TC changes
from 0.68 to 0.69. While Landsea (2007) makes good ar-
guments for the systematic undercounting of tropical cy-
clones in the past due to the their existence being unnoticed,
Mann et al., (2007) suggest various difficulties with a sim-
ple correction under the assumption of stationary climate
forcing, and point out that sparse observations can also lead
to over-counting when a single event is counted as two or
more events. Moore, Grinsted and Jevrejeva, (2008) showed
the correlation between PDI and TC has varied over time,
but for much of the common period of data the correlation
is significant at the 95% level; with only the period prior to
1955 showing consistently lower significance. Moore, Grin-



sted and Jevrejeva (2008) concluded that as the moving cor-
relation between TC and PDI (Fig. 1) was generally high,
that TC could be used as a surrogate with reasonable confi-
dence. Here, however we will examine the revised TC in
some detail. The long TC record allows more rigorous sig-
nificance testing for long period variability than analyses
that have focused on the instrumental records available only
from 1940s or later (Emanuel 2005; Michaels, Knappenber-
ger and Davis, 2006).

We consider the set of SSTs for the Atlantic averaged
over the area 6-18°N, 20-60°W, defined as the cyclone main
development region (MDR), during the months of August,
September, and October, (SST¢). We use the HadISST2
data (Rayner et al. 2003) which extends from 1870 to 2004.
There is no theory that predicts the number of Atlantic
tropical storms directly as a function of SST (or potential
intensity). GCM simulations suggest that there is a link be-
tween rising SST and strength of hurricane maximum wind
speed, such that a 1°C rise in SST¢ leads to a 5% increase in
maximum wind speed (Knutson and Tuleya 2004). How-
ever observations in the Atlantic region suggest that the
PDI, which is dominated by the largest storms, has in-
creased by about 20% per °C since 1980, and perhaps by
10% per °C over the Twentieth Century (Emanuel 2005;
Landsea 2005).

We used the historical variation in Northern Hemisphere
and Eurasian snow cover extent derived from reconstructed
daily snow depth (1922-1971) and NOAA satellite data
(1972-1997). The method for reconstructing snow cover ex-
tent is described in Brown (2000). The spatial distribution
of historical in situ data meant that reconstruction of conti-
nental-scale snow cover extent was only possible in three
months: October, March and April for Eurasia, while for the
whole Northern Hemisphere it was only possible for March
and April. We constructed 2 indices: one of spring Northern
hemisphere snow cover as the mean of march and April
coverage, and one Autumn coverage for Eurasia based on
the October extent in Eurasia. It is worth pointing out that
these records are far longer than the purely satellite derived
snow over extent data which begins only in 1972, and hence
is of virtually no utility in examining decadal or longer rela-
tionships with other times series.



3 Methods

Elsner (2007) uses the method of Granger causdlity to de-
termine phase relationshi ps between time series, and finds
convincing evidence for mechanistic relationships between
Atlantic SSTs and global temperatures. In contrast with
Granger causality methods that work in the time-domain,
here we use wavelet methods. The method we use (Moore,
Gringed and Jevrgeva. 2007; Moore, Grinsted and Jevre-
jeva 2008) determinesthe non-linear interactions between
the two time series that may be chaotic. Briefly we extract
the phase expression of the time series derived from the
Continuous Waveet Transform (CWT) of atime series (e.g.
Gringed, Moore and Jevrgjeva 2004; Torrence and Compo
1998). Here we apply broad band pass wavel et (the Paul
wavelet of order 4) tofilter the time series. The centrefre-
quency of the Paul wavelet, ), isan important parameter in
the analysis.

The wavelet is stretched in time by varying its scale (s),
so that #=st, and normalizing it to have unit energy. The
CWT of atimeseries X, {X,, n=1,...,N} with uniform time
steps dt, is defined as the convolution of x, with the scaled
and normalized wavelet.

Wi (s, =% a x/,(n¢ n)<].

n¢=1

The complex argument of W(s,t) can be interpreted asthe
instantaneous phases of X{o;..., o} a the scale s We util-
ize the strength of the instantaneous phase angle difference
between two series (X and Y), also known as the mean
phase coherence, p(X,Y) (Mokhov and Smirnov 2006). We
areinterested in causative relations, so it is appropriate to
measure p between the instantaneous phases ¢ and 4 of the
two time series
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We vary the relative phase delay between the two
series by lagging ¢ relative to 6 by a phase lag, A. Signifi-



cance testing of p isdone by Monte Carlo methods against
1000 redlizations of a red noise background (Gringted,
Moore and Jevrejeva, 2004), and the results can be visual-
ized in atwo-dimensional plot of p in A-A space analogous
to the wavelet frequency-time space plot. Asafurther re-
finement in the utility of such aplot we find it useful to
contour the strength of linear regression of the wavel et fil-
tered time series asafunction of A and A, so that the color
scale bar corresponds to the value of min the equation of
Wy (A, t+A) = m Wy (A,t). The phase relationship over the
range multi-year to decadal periods was examined by filter-
ing both time serieswith a Paul wavelet with A between the
Nyquist frequency and 40 years with six A per octave of
scale.

4. Reaults

4.1. TC corrections and Normality

Itiswell known that the TC time seriesis not Normally dis-
tributed but follows a Poisson distribution (Solow and
Moore, 2000). However here we are interested to see how
the non-Normality affects the novel statistica techniques
we use. Thereis also aquestion asto how discrete data such
as TC can be used in methods that were developed for con-
tinuously distributed data. One approach to providing a
more continuous time series could be smoothing by running
averaging the TC rate over avariety of scales, though any
particular length of the running average would create data
that would still be rational numbers. The smoothing win-
dow would naturally tend to produce a more Normal distri-
bution viathe Centra Limit Theory. The CWT method is
superior to running means as it effectively smoothes the
data by the particular wavelet filter used, and this createsa
much less discreet set of data. For both the modified and
raw TC time series a Bera-Jarque test of Normality isre-
jected (p=0.02) Fig. 2), however, the data are acceptably
Lognormal (p=0.15). Clearly thisisdueto the TC being
non-negative with along tail.
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Fig. 1. Time series of TC (black), modified TC (grey dotted) and PDI (grey, multiplied by 10).
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Fig. 2. Distribution of TC (black) and modified TC (grey), and their best fit Normal distribu-
tions.

We can remove the lack of Normaity from the TC
distribution completely by making use of aNormalization



procedure (Jevrgieva, Moore and Gringted, 2003). We trans-
form the origind data using a data adaptive transformation
function. The transformation operator is optimally chosen
so that the new probability density function is Normal, has
zero mean and unit variance. Thisis calculated by making
the inverse normal cumulative distribution function of the
percentile digtribution of the origina distribution (Fig. 3).
We refer to this procedure as Normalization and it can bea
rather drastic operation to use on atime series. However,
Jevrgieva, Moore and Grinsted, (2003) have shown that the
results from even grossly non-Normal distributions, that
would not produce reliabl e results with the wavel et method,
do give results after Normalization that are consistent with
alternative methods of signal extraction such as Singular
Spectrum Analysis. Henceforth we denote the Normalized
modified TC seriesas TC”
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Fig. 3. Theraw TC data (diamonds), (from Mann et al., 2007) modified TC (squares), (from
Landsea, 2007) and Normalized modified TC (TC") (marked by +) created as described in the
text, plotted on normal probability scaling so that straight lines represent a Normal probability
distribution.

Fig. 4 shows at first glance, quitelarge differencesin sig-
nificant regions. However, the differences in the actual val-
ues of coherence arerather dight, the coherence being quite
close to the 95% vaue that marksthe border. There are



quite small differencesin the time derivative dSST plots.
The differences become smaller if the smple normalized
times series or the simple modified time series are com-
pared with the original TC. The largest differences arein
the 25-30 year band, with no significant region in the raw
TC curve but aquitelargeregion in the normalized modi-
fied TC data. Again at first glance this may seem to offer
support for the low frequency AMO oscillation, but there
should be anumber of cautions. The largest region of sig-
nificance isin therather dubious physical region of the
graph whereby TC determines SST at rather long lead
times of a decade or more.
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Fig. 4. Wavelet lag coherence plots showing: (a) TC sensitivity on SST¢ (Wy(A,t+A) =m
Wx(A,t), min number per °C is shown on the colour bar, asafunction of Paul wavelet filtered
period (A) and phase lag (A), solid black contour is 95% confidence interval of mean phase co-
herence (p) contours The arrow notation in Y —X etc. denotesthat Y leads X in lag space. (b) TC
and the d SST¢. (c) Normalized modified TC (TC”) and SSTcand (d) TC” and thed SST¢

An dternative complimentary method of examining the
datais using wavelet coherence. Fig. 5 shows that there are
very dight differences between the TC” Normalized modi-
fied TC time series and theraw TC series.
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Fig. 5. (8) Squared wavelet coherence between SST¢ and TC (dark high values, light low val-
ues). The 5% significance level against red noise is shown as athick contour. The relative phase
relationship is shown as arrows (with in-phase pointing right, anti-phase pointing left, and SST¢
leading TC by 90° pointing straight down), the curved lines with no colouring delineate the re-
gion affected by data boundaries (Grinsted, Moore and Jevejeva, 2004); (b) Asfor (a) but with
the Normalized modified TC and SSTc.

4.2. Snow cover and Cyclones

It has been suggested that the large scale atmosphereisim-
pacted by cyclone activity for some considerable period af-
ter the cyclone has dies away. This memory may be ex-
pected to manifest itself on seasonal snow cover in the
Northern Hemisphere. We investigate thisusing thelong
series of snow cover estimates from Brown (2000). Fig. 6
and 7 show the behaviour of Northern Hemisphere spring
snow coherence and sendtivity with TC and TC”. Perhaps
most surprising isthat Fig. 6 shows that therelationshipis
basically in-phase, so that more spring snow implies greater
numbers of TC. However, Fig. 7 shows that the relationship
isnot significant except at rather long positive and negative
lags of about a decade. Particular mechanisms for interac-
tionswith snow cover have been proposed by Hart, Maue
and Watson (2007). In particular they suggest that autumnal



snow cover may beinfluenced by TC. Fig. 8 and 9 examine
October snow cover extent 1922-1997 in Eurasia—time se-
ries for the whole Northern Hemisphere not being available.
In contrast with Figs. 6 and 7, we see that therelationship is
consistently anti-phase, with zero or small lag times, but
significant only at decadd periods. Thus we see that the
spring and autumn snow coversreact in quite different
ways. We al so tested the Eurasian spring snow cover rela
tionship with TC (not shown here) and found the wave et
coherence to be very similar as for the Northern Hemi-
sphere asawhole (see Fig. 6), but the lag coherence had no
areas of significance.
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Fig. 6. (a) Squared wavelet coherence between Northern Hemisphere spring snow cover and TC.
Contours and arrows as for fig. 5. (b) coherence between Northern Hemisphere spring snow and

TC .
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Fig. 7. (a) sensitivity of TC on Northern Hemisphere spring snow and (b) sensitivity of TC” on
Northern Hemisphere spring snow. Contours and color bars as fig. 4.
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Fig. 8. Asfor fig. 5 but (8) TC and Eurasian autumn snow and (b) TC" and Eurasian autumn
Snow.
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5. Discussion and conclusions

5.1. TC time series and statistical testing

It has already been argued (Mann et al., 2007) that the
modifications suggested by Landsea (2007) and others, do
not affect the main results of trend and correlation analysis
between SST¢ and TC. We show quite clearly that thisis
also true of andysis of the coherence and lag regressions of
the modified time series, which even largely survive the
gross manipulation of the time seriesto ensure compl ete
Normality. One reason why the wavelet methods we use are
not particular sensitive to the actua distribution of the data
isthat the Paul —and indeed most if not all wavelets, use

13



14

more data pointsin their filter than required by smple Ny-
qust frequency considerations. This means that we smooth
the data by a series of filters of different lengths. While the
wavelet filtersare infinitely long, the minimum scale used
hereis 2 which for the Paul wavelet of order 4 corresponds
to a shortest period of about 2.8 years for annual data. The
longer thefilter, the more smoothed the data and the closer
the distribution of data within that sample length will be to
Normally distributed by the Central Limit Theory.

It has been suggested that our significance tests
done on the wavelet data may be misinterpreted. That is
small areas of significance at the 95% level could occur
purely randomly some of thetime, and so if the significant
region isasmall part of the whole figure, it may be there
purely by chance. However this does not take into account
that the tests are on phase rel ationships not measures of
common power. Hence the significance will not be inflated
simply by a few common bits of high power in the two se-
ries. Thisis borne out by testing of many series where we
find absolutely no region of significant coherence regard-
less of how large the plot is made in lag-period space. The
significance test uses the most conservative red noise model
available, i.e. matching the origina series mean, sandard
deviation and lag-1 autocorrelation, so the Monte Carlo
common coherence thresholds found will be more conser-
vative than simply random noise would give. Thisfollows
asred-noise that does not possess the same characterigtics
as the data would be less correlated with the data and hence
provide alower significance threshold in Monte Carlo test-
ing than given by noise matching the data characteristics.
However, since the procedureis essentially band pass filter-
ing, the type of noise distribution isnot very critical for sig-
nificance testing. Similarly as the coherence is a phase
matching rather than common power finding method, the
relative power distribution isnot important in frequency
gpace. Therefore the actual noise model e.g. red noise auto
regressive (AR1) or fractional Gaussian (self-similar scal-
ing), islessimportant for significance testing than would be
case for many other statistica methods.

5.2 TCinteraction with snow cover

Theresults presented in Figs. 6-9 arerather curious. The
differences between spring and autumn snow cover are
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somewhat suggestive of the differences seen at 5 year and
decadal periodsin TC and SST. which Moore, Grinsted and
Jevrgieva (2008) interpreted by ENSO and Gulf Stream
/INAO variability. The decadal power seen in autumn snow
is cons stent with the ideas suggested by Hart, Maue and
Watson, 2007 regarding the extra-tropical impact of tropical
cyclones. Thelarger the number of tropical cyclones, the
less autumn snow cover appearsto be logical given the en-
ergy transport from tropics mediated by the cyclones. The
surprising feature isthat this effect is only apparent at de-
cadal periods. This suggests acommon causal factor with
SST. decadal variahility (Fig. 4 and 5) ascribed to
NAO/Gulf Stream variability at 7.8 years. NAO phaseis
known to strongly impact precipitation in Europe and the
Middle Eag, so this observation is consistent with ideas that
NAO plays a useful rolein predicting TC. Positive NAO
phase has been related to decreased sea level pressures
(SLP) over the Arctic region - with a minimum over Ice-
land- and a northeastward extension of the Atlantic storm
track to Greenland, Iceland, Norway and Barents Seas,
causing mgjor increases in cyclone activity in the area and
thusincreased heat flux over theregion (Serreze et a. 1997,
Alexandersson et al. 1998). Such situations enhance south-
erly warm winds over the western Nordic Seas, causing 1)
compaction and reduced freezing in theice margin (Vinje
2001), 2) warm air advection (Deser, Walsh and Timlin,
2000), and 3) enhanced flow of warm and saline Atlantic
water (Grotefendt et a. 1998; Morison, Aagaard and Stecle,
2000; Polyakov et al. 2004). Persistent positive NAO phase
is predicted by climate model s as a consequence of global
warming (e.g. Gillett, Graf, and Osborn, 2003). Regardless
of this, NAO relationships with Arctic environment are far
from stationary. Surface air temperatures (SAT), SST, and
SLP over the North Atlantic during the period 1873-2000
have alternated decades of strong negative with decades of
strong positive correlations with NAO (Polyakova et a.
2006). Likewise, NAO and SAT records from Europe
showed significant non-stationarities on decadal time-scales
(Slonosky, Jones and Davies 2001). Suggested mechanisms
for such non-stationarities are the co-occurrence or other-
wise of several NAO-related SLP patterns (Madanik et al.,
2007), or the planetary-scale SL P wave (Cavalieri, 2002).
The spring snow cover —in the northern hemi-
sphere, but not in Eurasia, has significant common coher-
ence with TCin the 5 year band. If thisis an ENSO feature
then it is entirely plausible given theimpact of ENSO on
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the Pacific Decadal Oscillation (PDO) and the observed
large impact that the PDO has on North American climate
(Biondi, Gershunov, and Cayan, 2001). Thelong lags seen
(Fig. 7) may in fact be areflection of the dominant bi-
decadal periodicity of the PDO (Minobe, 1999) on the fun-
damental ENSO impact on TC that has been observed for
many years (Gray, 1984; Moore Gringed and Jevrgjeva
(2008).
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