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Abstract

Global climate models are good tools for simulating transnational and interregional transport of
pollutants such as PM, 5, which is of growing interest and importance, for example in human health
and socio-economic development studies. However, reliable estimates of PM, 5 are very challenging
for such relatively coarse and simplified models, and even state of the art models fare poorly in
matching satellite observations in many highly polluted, and some almost pristine environments. This
work describes a novel bias correction method based on multiple linear regression (MLR) modelling.
The target data we aim for is global satellite-based data and the PM, 5 precursors simulated by the
Community Earth System Model Version 1.2.2. The statistical method greatly reduced the simulation
biases of PM, s worldwide compared with satellite-derived PM, s, especially in highly-polluted
regions, such as northern China, the Indo-Gangetic plains, the Democratic Republic of Congo and
northwestern Brazil. Root-mean-square differences (RMSD) between continental-averaged observa-
tions and simulations are reduced from 75% to 9%. The ensemble RMSD for 13 countries exemplified
here is reduced from 116% to 3%. One virtue of the MLR method is that details of the classification of
internal mixed modes of each aerosol and their spatial differences are not required. The MLR
coefficients are designed to be highly aerosol- and country-dependent, so they provide new
perspectives of relative importance of each aerosol to local PM, 5 and offer clues on observational and
simulation biases. The bias-correction method is easily applied for air pollutants simulated by global
climate models due to its low computational cost.

1. Introduction

Regional climate models (RCMs), such as the weather research and forecasting model (WRF), are commonly
used to simulate fine particulate matter and assess local air quality. RCMs have higher spatial resolution than
global climate models (GCM:s) and tailored representations of the regional or urban contexts (Bai et al 2021,
Bran and Srivastava 2017, He et al 2018, Yang et al 2020). However, RCMs are not suitable for the simulation of
long-range transport of air pollutants over larger regions, such as a hemispheric domain. In these cases, GCMs
are more suitable, and the accurate simulation of fine particulate matter in GCMs becomes a concern.

The Community Earth System Model (CESM, Hurrell et al 2013) is a state-of-the-art GCM, providing
computer simulations of the Earth’s past, present, and future climate states. The CESM has been used in a
number of studies to simulate PM, 5. Recent studies such as Banks et al (2022) and Xu and Lamarque (2018) have
simulated aerosol concentrations using CESM with the Modal Aerosol Module, using a combination of the fine
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modes (Aitken and Accumulation modes) as a proxy for surface PM, 5 concentrations. Sulfate, black carbon,
primary organics, and secondary organics were included, but the fine components of sea salt and dust aerosols
were not considered. Compared with the satellite-derived PM, 5 (van Donkelaar 2018), the modeled PM, 5
concentrations in Banks et al (2022) were underestimated by more than 10 zg m ™ over northern India,
southern China, as well as most Southeast Asian and European countries, while concentrations were
overestimated by more than 10 ug m ™ over central South America. Possible factors responsible for simulation
biases are uncertainties in emission inventories, meteorological input, and over-simplified chemistry or aerosol
processes (Hur et al 2021, Gao et al 2011, Tilmes et al 2015, Liu 2012). Improving PM, 5 simulations with more
accurate emission inventories or better process modelling are ongoing long-term efforts. Meanwhile, carefully
chosen bias-correction methods are a rapid and convenient way for adjusting GCM model output for use in
downstream impact modelling.

Some bias correction methods have been effectively applied to reduce the PM, 5 bias in air quality models,
such as the simple running mean average, Kalman-Filtering (Djalalova et al 2010), the analog ensemble method
(Huang et al 2017), the Bayesian model (McMillan et al 2009) and a cluster-analysis-based synoptic weather
pattern (WP) classification (Cheng et al 2021). A recent machine learning-based correction method found great
improvements in correcting the PM, 5 biases over China (Liu and Xing 2022). The general applicability of all
these methods on global domains has not yet been tested.

In this work, we use correlation analysis and a multiple linear regression (MLR) model to correct the bias
between CESM-simulated PM, 5 and the satellite-based data (van Donkelaar et al 2021). The details of the bias-
correction method and its global utility are discussed here. Section 2 describes the data needed and methodology
used, section 3 shows the results at grid point level across the globe, and section 4 discusses limitations and
potential of the approach.

2. Method

2.1.Model

The Community Earth System Model version 1.2.2 was used to simulate global annual mean PM, 5
concentrations. The ‘B_2000_CAM5_CN’ component set was used, including Community Atmosphere Model
5 (CAMS5) (Neale et al 2010), Parallel Ocean Program version 2 (POP2), Community Land Surface Model (CLM)
version 4.0, the Los Alamos sea ice model (CICE) version 4, all coupled together using the CESM coupler CPL7.
The horizontal resolution of CAM5 was 0.9° x 1.25° latitude-longitude. The Modal Aerosol Module with three
modes (MAM3) was used to simulate the aerosol size distribution and the mixing between aerosol components,
and the complex aerosol processes and physical, chemical and optical properties of aerosols are treated in a
physically-based mode (Liu 2012). Black carbon (BC), primary organic matter (POM), sulfate aerosol, secondary
organic aerosol (SOA), dust and sea salt aerosols were simulated in three internally mixed modes by MAM3,
namely Aitken Mode (with dry diameter between 0.015-0.053 pim), Accumulation Mode (0.058-0.27 ym)and
Coarse Mode (0.80-3.65 pim). Input emissions were based on Aerosol Comparisons between Observations and
Models (Textor et al 2006).

To simulate the modern PM, 5 concentrations worldwide, the default ‘B_2000_CAMS5_CN’ experiment
with greenhouse gas (GHG) levels and aerosol emissions of the year 2000 was adjusted to that of the year 2020.
The atmospheric GHG concentrations were changed to that of the year 2020 from NOAA (available at https://
gml.noaa.gov/ccgg/trends/). The aerosol emissions were updated to the year 2020 values from the
Representative Concentration Pathway 6.0 (RCP6.0) scenario experiment in CESM. The experiment was run for
300 years to allow the simulation to reach the climate equilibrium state of 2020, and the last 100 years were used
for the following analysis.

2.2.PM, 5 concentrations

Since there is no straightforward output of PM, 5 concentrations in CESM 1.2.2, we considered annual mean
aerosol concentrations with diameters smaller than 2.5 pm (Aitken, Accumulation and part of Coarse mode) in
MAM3 as a proxy for simulated surface PM, s. Integrating the Coarse mode log-normal spectrum up to 2.5
microns suggests that around 36% of total coarse mode can be considered PM, 5 (Qin 2003). All of the simulated
black carbon (BC) and primary organic matter (POM) were PM, s, since they only have the Accumulation mode.
All of the SOA was PM, s, since it only has Aitken and Accumulation modes. Sulfate and sea salt (SS) aerosols
have all three modes, while dust aerosol has Accumulation and Coarse modes. Accordingly, 36% of the coarse
mode of sulfate, sea salt and dust were taken as PM,, 5. Equation (1) summarises the calculation described above.
This method is similar to Banks et al (2022) and Xu and Lamarque (2018), but additionally includes the
contribution to PM, 5 by sea salt, dust aerosols and the Coarse mode of sulfate.
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Figure 1. Flowchart of bias correction process of CESM-simulated PM, s. The process is divided into two parts: (i) establishing bias-
correction model using 80-year simulated aerosols, MERRA-2 reanalysis aerosols over 2000-2019 (GMAO 2015) and the satellite-
derived PM, 5 over 2000—2019 (van Donkelaar et al 2021); (ii) validating the bias-correction method using 20-year simulated aerosols,
the ratio of 80-year mean simulated aerosols to MERRA-2 and the MLR model. The pink boxes are the input data for bias-correction,
the green boxes show the intermediate processing steps, and the blue boxes are the output results.

Simulated PM, s = BC,;; + POM,,; + SOA,;1 + SOA,, +Sulfate, | +Sulfate,,
+0.36 * Sulfate, ; + 4SSy + SSyz + 0.36 * SS,,3 +-dust,,; + 0.36 * dust,,; D

In equation (1) above, the subscripts m1, m2andm3 refer to Accumulation, Aitken and Coarse modes.

The 2000-2019 multi-year mean aerosol concentrations from the Modern-Era Retrospective analysis for
Research and Applications version 2 (MERRA-2, GMAO 2015) were used as the reference for the first step of bias
correction. This data was of 0.5 ° X 0.625 © horizontal resolution. After bias-correction of each aerosol type by
MERRA-2, a satellite-derived PM, s with 0.1° x 0.1° horizontal resolution (van Donkelaar et al 2021) over the
same 2000-2019 period was used for a secondary correction for total PM, 5 and model validation. This satellite-
derived dataset combines satellite observations, chemical transport modeling and ground-based monitoring.

2.3. Correction process

We selected thirteen countries worldwide (Europe: Germany, Poland, Italy, Asia: China, India, Indonesia,
Oceania: Australia, Africa: Nigeria, Egypt, Democratic Republic of Congo, The Americas: Mexico, Brazil, Peru)
with relatively large PM, 5 biases compared with the observations (see figure S1), to test the effectiveness of the
correction method on a global scale. In all the following discussion we limit ourselves to just these countries as
they span a range of behaviors representative of the global dataset and avoid the need to discuss every individual
country. The results for 6 continents are also shown in table S1. A flowchart of the multiple-step correction
process is given in figure 1.

The bias correction process is divided into two parts, obtaining the correction parameters and validating the
correction model. We randomly divided the CESM-simulated 100-year annual mean aerosol concentrations
into 5 groups, taking the first 4 groups of 80 years to establish the parameters of the bias correction model, and
the last group of 20 years was used to validate the correction effect. The random selection was performed five
times, which we used for uncertainty in the bias correction method.

The 20002019 multi-year average aerosol concentrations from the MERRA-2 reanalysis dataset were used
to calibrate the CESM-simulated sulfate, BC, POM, dust and sea salt aerosols (only considering aerosols less than
2.5 pm in diameter, and SOA is not included in MERRA-2). The 0.5 © x 0.625 ° horizontal resolution of
MERRA-2 was bilinearly interpolated to the 0.9° x 1.25° resolution for comparison with CESM outputs
(figure S2). In general, the spatial distribution of simulated aerosol concentrations matched well with that of
MERRA-2, except for the distribution biases of sulfate and sea salt in the Democratic Republic of Congo, and
sulfate in Italy. However, the magnitudes of sulfate, BC and POM concentrations were underestimated by CESM
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in most regions, particularly in northern China, northern India and southern Nigeria compared with MERRA-2
(figures S2.2 and S2.3). In addition, POM concentrations over Brazil were also underestimated (figure S2.4). The
most plausible reason is that the emission inventory used by MAM3 did not capture the high levels of
anthropogenic emissions in regions where sulfate, BC and POM were severely underestimated. As for dust
aerosols, significant overestimation occurred in northwestern China, Egypt and northern Nigeria (figures S2.2
and S2.3), probably due to the overestimation of the effects of deserts. Since the ratio of the simulated 80-year
mean aerosol concentrations to the 2000-2019 mean aerosol concentrations of MERRA-2 was fairly uniform
worldwide (figure S2), we corrected the simulated 80-year annual mean aerosols by multiplying them by the
ratio at every grid point.

The MERRA-calibrated aerosols (sulfate, BC, POM, dust and sea salt) and SOA need to be added together
using reasonable weights to be a useful proxy for PM, s. In MAM3, sulfate is partially in the form of NH,HSOy,,
so that fraction of sulfate is already prescribed. So, a multiplication factor for sulfate aerosols is needed since the
species tracer in CESM outputs is the sulfate ion. Nitrate aerosol is not simulated in the MAM output we have,
but it can be important on regional scales, especially in East Asia (Li et al 2015), where it is expected to be
increasingly important in the future due to reductions in sulfur dioxide and increases in nitrogen-oxides
emissions. Dust aerosols span a broad size range from 0.058 p¢m to 3.65 pm (dry particle diameter), and the use
of geometric diameter rather than aerodynamic diameter in MAM3 may overestimate the contribution of dust
aerosols to the total PM, s (Yang et al 2022). The proportions of aerosols in different size ranges will be affected
by physical and chemical reactions, such as coagulation, and also temperature, humidity and ultraviolet
radiation, which will not be perfectly simulated by CESM. Therefore, reasonable weights for each aerosol are
necessary to calibrate the contribution of each aerosol to the total PM, 5 concentrations.

We apply multiple linear regression (MLR) to create statistically reasonable weights for each aerosol. The
target data is the satellite-derived PM, 5 (van Donkelaar et al 2021) and the MERRA-calibrated 80-year aerosols
are potential explanatory variables. Many aerosols have common sources and are well-correlated, for example
sulfate, BC and POM in China and India. So, to reduce collinearity and avoid over-fitting the MLR model, we did
acorrelation analysis of MERRA-calibrated aerosols before the MLR process (Sheet 1 in Supplementary Excel).
Aerosol components that are correlated better than 0.7 (and with p < 0.01) over a specific country were
combined into a single explanatory variable (see Supplementary Excel) for the MLR model for that country. In
practice, the sources of most dust and sea salt aerosols are different from sulfate, BC, POM and SOA, and so we
only considered combinations of sulfate, BC, POM and SOA, keeping dust and sea salt aerosols as independent
variables. We also considered the specific spatial distributions of each aerosol (figure 2) to test or correct the
combination of different aerosols. In our 13-country example dataset we will discuss exceptions to these general
rules, as here, in the case of Peru where POM and SOA are highly correlated (R > 0.9), and although the
correlation coefficients between BC and POM or SOA are 0.67 or 0.51 (p < 0.01), and hence smaller than the
criterion of R > 0.7, the spatial distributions of BC, POM and SOA are quite similar to each other (figure 2). So,
in this case, we combined BC, POM and SOA into a single component for Peru.

The regression method we use (Matlab: Isqnonneg.m, Lawson & Hanson 1974) is an optimization code
rather than a plain linear regression since we specify only positive coefficients for the explanatory variables for
physical consistency. The 100-year CESM-simulated aerosols come from a climate equilibrium experiment for
the year 2020, which means that a grid point actually has one value for a specific aerosol as the rest of the values
are random scattered around that value. So, country-specific MLR models were built using 2000-2019 average
satellite-derived PM, 5 (van Donkelaar et al 2021) as the dependent variable, and the MERRA-calibrated 80-year
average aerosols as explanatory variables, after reducing them where possible to account for collinearity as
described above (equation (2)). The number (N) of the whole grid points in a country (table S2) is the number of
data points in the MLR. According to the One in Ten Rule (Harrell et al 1984, Harrell et al 1996, Peduzzi et al
1996), N should be greater than 10 times the number of explanatory variables (minimum is 3 here) to ensure the
reliability and predictive power of the regression model. The constant term € for the MLR formula was ignored
and the slope coefficients 3 were required to be larger than zero, and these were taken as the weights for each
aerosol. Then, the bias-corrected PM, 5 concentrations can be represented by the weighted sum of the six
aerosols (equation (3)). We also estimated the contributions of the MERRA-calibrated aerosols to the total bias-
corrected PM,, 5 concentrations for a specific country as equation (4) (Wang et al 2022).

m(r)

Yiy = Zxk,i(r) X Br + €
k=1

i=1,2,---N(r) @)
6

PMsipy = Y Aerosolg iy X W, 3)
g=1




10P Publishing

Environ. Res. Commun. 5(2023) 101001 W Letters

sea salt
Europe pg/m’

E__a 2t
Frrt o

Asia & Oceania DQ:'“ Asia & Oceania Hg/m

Asiad Oceania  hgm’ Asia& Oceania  Mgim®

“to

0408 2 & 10 14 18 0206 1 2 3 4 5

Afirca ng/m’

0408 2 6 10 14 18

South America Hg/m

e0s T T 808

0206 1 2 3 & § 4 6 8 1012 14 6 8 1012 14

'mlLM

4 6 8 10 12 14

Figure 2. The average of MERRA-calibrated 80-year annual mean surface aerosol concentrations for different countries worldwide.

Wy, X Aerosol, ,
Cg,r = il cid (4)

6 ——
Zg:l We,r X Aerosoly,,

Here, y, ,, is the satellite-derived PM, 5 concentration of grid cell ilocated in country r. N(r) is the total number
of grid points of country r. x ;) is the concentration of component k combined by the MERRA-calibrated
aerosols. m (r) is the number of components in country r. 3y , is the slope coefficient for component k in country
r. € istheresiduals. PMy 5 -y  is the corrected PM, s concentration of grid cell ilocated in country r.
Aerosol, ;(r represents the concentration of Aerosol g corrected by MERRA-2 data. wy . is the regression
coefficient for aerosol gin country r. Aerosol, , is the regional mean MERRA-calibrated aerosol g for country r,
and C, , is its contribution to regional mean corrected PM, 5 for this country.

To assess the correction effect of PM, 5 worldwide, we used the same method for the 13 representative
countries to correct PM, 5 in the six continents (Europe, Asia, Oceania, Africa, North America and South
America) but based on continent-specific MLR coefficients (rin equations (2) and (3) indicating a specific
continent in this case).

For validating the correction method, we used the grid point ratios of the simulated 80-year aerosols to
MERRA-2 to correct the remaining 20-year aerosols, and then applied the regression coefficients to obtain the
corrected PM,, 5 (equation (3)). The corrected PM, 5 concentrations in the validation data sets are compared
with satellite observations for the 13 representative countries in figure 3, and for the whole globe in figure S3.

3. Results

The bias-corrected PM, 5 in figures 3 and S3 show similar spatial distributions as the satellite-derived PM, 5 and
reproduced well the high concentrations in northern China, the Indo-Gangetic plains, Democratic Republic of
Congo and northwestern Brazil, which were severely underestimated before correction (figure S1). However, the
corrected PM, 5 concentrations show a significant underestimation in eastern Nigeria and an overestimation in
western Nigeria. This is a consequence of the different relations between east and west for the variables in the
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MLR regression. This can be related to the different pattern of surface winds in the country (figure S4b). Despite
this, the correction method significantly reduces the differences between the regional mean PM, 5
concentrations simulated by CESM and the observed one (van Donkelaar et al 2021). The bias-corrected PM, 5
concentrations in most of the 13 representative countries are within 5% of observations (table S1), and the 13-
country ensemble RMSD (equation S1) of simulated regional mean PM, s from observations at country scale is
reduced from 115.8% to 3.3%. The 6-continent RMSD of bias-corrected mean PM, 5 based on continent-
specific MLR models from the observations is 9.7% compared with 74.7% with no bias correction. This
decreases to 8.6% if we use the 13 representative countries bias-corrected PM, 5 within the continental models
(table S1). So, while country-specific MLR models are more accurate than continental-wide MLR models,
differences from observations are still lowered by a factor of 7.

The MLR coefficients of each aerosol for the 13 countries are shown in figure 4 and provide information on the
contribution of aerosols to total local PM, s. In the case of Indonesia, for example, the contribution of MERRA-
calibrated sulfate, BC and dust aerosols to the total PM, 5 were underestimated, while that of POM, SOA and sea
salt aerosols were overestimated. The large coefficient of dust aerosols means that the importance of dust aerosols
to Indonesia’s actual PM, s distributions was highly underestimated. The source of the dust in this case may be
attributed to transport from the deserts of Australia towards Indonesia (figure S4a), or seasonal biomass burning
due to frequent fires occurring in degraded forests and peatlands (Lestari and Mauliadi 2009, Siregar et al 2022).
The large overestimations of sea salt (with a coefficient 0f 0.2) in Indonesia, may be related to the simulation biases
of sea surface temperatures and sea ice, which can affect the distribution of global sea salt aerosols (Jiang et al 2021).

We also estimated the relative importance of different aerosols to total PM, 5 in specific countries. For
Germany, Italy and Australia, the contributions of sulfate are larger than that of any other aerosols, and the
largest contributions of SOA can be seen in the Democratic Republic of Congo and the three American
countries. In Nigeria and Egypt, dust aerosol contributed largest to local PM, 5. Comparing the spatial
distributions between each aerosol and the bias-corrected PM, 5 (figures 2 and 3), we found that the spatial
distributions of sulfate, SOA or dust aerosol dominated the local PM, 5 distributions for the above countries.
However, for China, India and Indonesia, although dust aerosols made the largest overall contribution to total
PM, 5, the country spatial distribution of PM, 5 was more similar to that of sulfate, BC, POM or SOA than to dust
aerosols, hence we may expect that the PM, 5 variance explained by these variables would be greater than by dust.
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4, Discussion and conclusion

The long-range transport of air pollutants over different countries or even continents is important in the
evaluation of future human health and socio-economic development pathways. Global climate models are a
potentially excellent tool to simulate this process and potential impacts (Ran et al 2023). However, global climate
models such as CESM are not good at simulating aerosol and PM, 5 concentrations due to their relatively coarse
resolutions and oversimplified representation of chemical processes compared with regional climate models.
Thus, correcting the simulation biases in global climate models is a legitimate concern. In this work, we
introduced and evaluated a multi-step correction method based on correlation analysis and multiple linear
regression modelling for PM, 5 concentrations simulated by an earth system model. Our results show that the
correction method can considerably improve the simulations of the spatial distributions and magnitudes of
PM, 5 concentrations worldwide, reducing the root-mean-square differences of simulated PM, 5 at continental
scales by a factor of 7.

Randomizing the calibration and validation datasets shows that the coefficients derived from the model are
robust. However, coefficients can be changed significantly by the selection of aerosol combinations for the MLR
process. This is a consequence of the over-fitting caused by collinearity in the fitting variables. Additionally,
manual checking of the spatial pattern within countries is useful to avoid effects such as different climate factors
driving aerosol species across a country (e.g. as we illustrated for Nigeria). But even in these cases, the MLR bias
correction still offers improvements over the climate model simulations. One benefit of using a simple tool like
the MLR model to produce coefficients for each aerosol is that the spatially complex and variable classification of
internal mixed modes for each aerosol are handled implicitly. These aerosol modes are greatly affected by
physical and chemical reactions amongst themselves, as well as the atmospheric background conditions.
Furthermore, these conditions will also change temporally as states make efforts to reduce PM, 5 concentrations
in future, decarbonize their economies and alter their energy production balance.

Here we take the number of whole grid points in a country (or continent) as the number of data points in
each MLR model. Most of the 13 representative countries have N > 10 times the number of independent
variables (the x in equation (2)) in the MLR. For some small countries such as Kuwait, Lebanon and Palestine,
this country-based method has very small N, and may not provide reliable information about local emission
features.

We choose countries rather than regions having the minimum N grid points to build the MLR model
because countries are the most important administrative areas where the emissions are always related to local
policies and economy. The MLR coefficients are highly aerosol- and country-dependent, showing the relative
bias in aerosol simulation and modifying the understanding of the importance of species contributions to total
PM, 5 concentrations in an individual country. We discussed in section 3 how underestimated dust aerosols in
Indonesia contributed the most (39%) to local PM, s and could come from seasonal biomass burning or long-
range transport from Australian deserts (figure S4a). Unexpectedly, results for Poland also suggest a relatively
large contribution of dust aerosols (32%) to overall PM, 5, which is comparable to that of POM (37%). There are
significant local sources of dust in Poland especially in heavily industrialized Silesia and southern Poland, and
advected dust from the Ukrainian steppe and Saharan sources (Milinevsky et al 2020) that varies greatly on
seasonal scales and from year to year (Milinevsky et al 2020, Szczepanik et al 2021). This combination of sources
in Poland differentiates it from countries in western and southern Europe (DiIorio et al 2009, Israelevich et al
2012), where dust is relatively less important, e.g., Germany and Italy in figure 4.

The MLR derived PM, 5 in this work may be useful for various end-users of climate model output, and may
be improved by local insights and observations to reduce bias related to aerosol sources, transport and local
climate interactions. The small computational costs and time required to use the method means that
adjustments can easily be made to accommodate better knowledge and provide improved air pollutant output
from global climate models at regional and higher resolution.
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