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Abstract

Climate change has been projected to increase the intensity and magnitude of

extreme temperature in Indonesia. Solar radiation management (SRM) has been

proposed as a strategy to temporarily combat global warming, buying time for neg-

ative emissions. Although the global impacts of SRM have been extensively stud-

ied in recent years, regional impacts, especially in the tropics, have received much

less attention. This article investigates the potential stratospheric sulphate aerosol

injection (SAI) to modify mean and extreme temperature, as well as the relative

humidity and wet bulb temperature (WBT) change over Indonesian Maritime

Continent (IMC) based on simulations from three different earth system models.

We applied a simple downscaling method and corrected the bias of model output

to reproduce historical temperatures and relative humidity over IMC. We evalu-

ated changes in geoengineering model intercomparison project (GeoMIP) experi-

ment G4, an SAI experiment in 5 Tg of SO2 into the equatorial lower stratosphere

between 2020 and 2069, concurrent with the RCP4.5 emissions scenario. G4 is

able to significantly reduce the temperature means and extremes, and although

differences in magnitude of response and spatial pattern occur, there is a generally

consistent response. The spatial response of changes forced by RCP4.5 scenario

and G4 are notably heterogeneous in the archipelago, highlighting uncertainties

that would be critical in assessing socio-economic consequences of both doing,

and not doing G4. In general, SAI has bigger impacts in reducing temperatures

over land than oceans, and the southern monsoon region shows more variability.
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G4 is also effective at reducing the likelihood of WBT > 27�C events compared with

RCP4.5 after some years of SAI deployment as well as during the post-termination

period of SAI. Regional downscaling may be an effective tool in obtaining policy-

relevant information about local effects of different future scenarios involving SAI.
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1 | INTRODUCTION

Indonesia, and the Maritime Continent in general, are
known to be some of the most vulnerable regions to climate
change, largely because it is an archipelago, with densely
populated regions vulnerable to coastal flooding, and also
forested and intensively farmed interiors susceptible to fire
and drought (Measey, 2010). In addition to the flood and
tropical storm risks, Indonesia is especially vulnerable to
extreme temperature changes; extreme heat is a major
cause of disasters in Indonesia, leading to droughts and
fires. Fernades et al. (2017) found an increasing trend of
drought and wildfire risk in Indonesia, a fact that has been
confirmed by the Indonesian National Disaster Manage-
ment Agency (BNPB) in its Disaster Indices Report
(BNPB, 2019). The impacts of warming temperatures and
precipitation change also make it difficult for Indonesia to
meet food demand as livelihoods are directly affected.
Urban heat and humidity rise under greenhouse gas scenar-
ios are projected to hugely impact liveability in, for exam-
ple, Jakarta (Varquez et al., 2020). Examining future trends
in these changes are crucial for understanding and ulti-
mately addressing climate change in Indonesia.

Solar radiation management (SRM), sometimes known
as solar geoengineering, has been proposed as a potential
strategy to temporarily combat global warming (Crutzen,
2006; Wigley, 2006; NRC, 2015). There are many proposed
techniques, but the most commonly discussed SRM method
is via stratospheric sulphate aerosol injection (SAI), which
is based on observations that past volcanic eruptions cool
the planet (Budyko, 1977; Crutzen, 2006). There has been
much research over the past decade into the climate
impacts of SAI. Numerous studies have shown that SAI
would likely reduce impacts of climate change on global
temperatures (Govindasamy and Caldeira, 2000; NRC,
2015), precipitation (Tilmes et al., 2013), extreme events
(Curry et al., 2014; Ji et al., 2018), the cryosphere (Moore
et al., 2010) and numerous other areas. However, SAI is not
without its side effects; in a recent review, Irvine
et al. (2017) pointed out the potential risks of SAI tech-
niques as compared with risks posed by climate change.
Recently, more studies have focused on investigating SAI
impacts such as on agriculture (Pongratz et al., 2012; Xia

et al., 2014; Yang et al., 2016; Proctor et al., 2018), public
health (Effiong and Neitzel, 2016), biodiversity (Trisos
et al., 2018), hydrology (Dagon and Schrag, 2016) and eco-
nomics (Harding et al., 2020), among others.

Most of the aforementioned studies have attempted to
investigate SAI impacts on future climate conditions on
regional and global scale. Ricke et al. (2010) found that SAI
would generally lead to less extreme temperature and pre-
cipitation anomalies, but they found significant diversity in
climate response to SAI on a regional scale. Numerous stud-
ies since then have found that, while moderate amounts of
geoengineering show promise in alleviating many aspects
of climate change in most regions, there are for some
regions and climate fields, cases where SAI exacerbates cli-
mate change (Kravitz et al., 2014; Irvine et al., 2019).
Because most studies of SAI have been conducted by
researchers in the global north, many of the conclusions
obtained from SAI inherently are biased toward this view-
point. In contrast, people in the global south are on the
front line of climate change (ADB, 2019), and in the context
of SRM, developing countries have the most to gain or lose.
Increasing informed global south participation in SRM
research has strong potential to enrich discussions around
SRM and reduce that bias (Rahman et al., 2018). To date,
research on the impacts of SRM on developing countries by
developing country researchers is still very limited. Of the
few studies, Pinto et al. (2020) showed that SAI is effective
in reducing mean and extreme temperature but not effec-
tive in maintaining rainfall to historical values over
South Africa. Karami et al. (2020) finds that SRM could par-
tially offset the shift of storm tracks induced by global
warming, and thus reduce some water stresses in the Mid-
dle East. Furthermore, Da-Allada et al. (2020) studied how
SRM could affect the West African monsoon, concluding
that SRM would reduce climate-caused disruptions to rain-
fall in the northern and southern Sahel.

Here we continue this effort to increase developing
country participation in SRM research. This article is, to
the best of our knowledge, the first investigation of SAI
impacts on Indonesia, particularly the ability of SAI to offset
temperature changes in the Indonesian Maritime Continent
due to climate change. The IPCC Fifth Assessment Report
(IPCC;, 2014) reports that under an RCP4.5 scenario,
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tropical countries such as Indonesia will experience long-
term warming with the projected temperature change to
mid-century (2046–2065) exceeding 2.5�C. Supari
et al. (2017) analysed the observed changes in extreme tem-
perature and precipitation over Indonesia and found that
the annual means of daily maximum (TXmean) and mini-
mum temperature (TNmean) had increased significantly by
0.18 and 0.30�C per decade, respectively. In general, they
found significant warming trends in extreme temperature
indices. Our aims are to improve understanding for the
research community, stakeholders, and the general public
of the Maritime Continent as to what SRM might mean for
them. Moreover, this information will be crucial for under-
standing how Indonesia may be able to address climate
change.

Most studies of climate change in Indonesia, and all
studies of SRM that have made conclusions about the Mar-
itime Continent, have been performed with Earth System
Models (ESMs) (e.g., Faqih et al., 2016; Sarmini and
Faqih, 2016; Ji et al., 2018; Parkhurst et al., 2019). How-
ever, ESMs are of too coarse a resolution to explain
regional or local climate characteristics, and are often
biased compared with historical observations. To carry out
regional impact studies, we perform downscaling and bias
correction over the Indonesian Maritime Continent to the
ESM outputs using state-of-the-art methods to ensure the
quality and validity of climate projections of SAI experi-
ments. The downscaling generates high-resolution
regional climate information based on the large-scale
information from the ESM (Trzaska and Schnarr, 2014;
Tang et al., 2016; Zhang et al., 2020). Furthermore, our
analysis focuses on investigating the geographic pattern of
changes over the Indonesian Maritime Continent.

The structure of this article is organized as follows. A
detailed description about the dataset analysed in this
article as well as the downscaling and bias correction
methods are given in Section 2. Section 3 provides the
results of the downscaling and bias correction, continued
with the impact analysis, and Section 4 contains discus-
sion and conclusions from our study.

2 | DATA AND METHODOLOGY

2.1 | Data description

This study is focused on investigating SAI (as specified by
the G4 scenario) impacts over the Indonesian Maritime
Continent, (6�N–11�S, 95�E–141�E). For this study, we
downscaled daily surface air temperature output as well as
relative humidity from ESMs for the historical period and
assessed future climates under both the Representative Con-
centration Pathway 4.5 (RCP4.5; Meinshausen et al., 2011)

scenario alone and the G4 combined RCP4.5 and SAI sce-
nario. The RCP4.5 simulation includes of change in green-
house gases and aerosols such that the net radiative forcing
in the year 2,100 is 4.5 W m−2 as compared with the
preindustrial era. The SAI scenario is the GeoMIP experi-
ment G4 (Kravitz et al., 2011), which is based on RCP4.5
with the addition of 5 Tg SO2 per year injected continuously
above the equator into lower stratosphere (16–25 km in alti-
tude) beginning in 2020 until 2069. SAI is then terminated,
and the simulation is run for an additional 20 years with
standard RCP4.5 forcing to quantify the climate rebound.
The RCP4.5 data is part of the Coupled Model
Intercomparison Project Phase 5 (CMIP5; Taylor et al.,
2012) and is readily available via the Earth System Grid Fed-
eration (http://cmip-pcmdi.llnl.gov/cmip5/). This article
investigates the performance or skill of three different ESMs
that performed these simulations: BNU-ESM (Ji et al.,
2014), MIROC-ESM and MIROC-CHEM-ESM (Watanabe
et al., 2008, 2011). All three models have a horizontal resolu-
tion of 2.8� latitude and longitude. The two MIROC models
are the same but for a more sophisticated atmospheric
chemistry simulation in MIROC-ESM-CHEM. BNU-ESM
has a lower atmosphere upper bound at 3 hPa (about
30 km), whereas the two MIROC models extend to
0.003 hPa in altitude (about 40 km). All three models repre-
sent stratospheric aerosol geoengineering using prescribed
aerosol optical depth. In addition, MIROC-ESM-CHEM cal-
culates aerosol surface area density based on the aerosol
optical depth, for use in heterogeneous chemistry calcula-
tions. The land surface, vegetation, ocean, and sea ice com-
ponents differ markedly between BNU-ESM and the two
MIROC models. This study is focused on examining these
three models which were the only ones with the necessary
data for all of the experiments we investigated.

We evaluate the performance of downscaling and bias
correction using three different methods on the historical
period 1950–2005. We then use the best method to bias-
correct future projections of ESM scenarios. We choose
two periods: 2020–2069 and 2070–2089, representing the
mid-century and end-century projection periods. For G4,
2069 is when SAI terminates, so the analysis of SAI under
G4 is restricted to years prior to termination. The baseline
for downscaling the historical period is the Modern-Era
Retrospective Analysis for Research and Applications
(MERRA) reanalysis dataset developed by Rienecker
et al. (2011). The term “reanalysis” hereafter refers to
MERRA-2 reanalysis data. The reanalysis data span from
1980 to early 2019. The datasets used to extract surface
temperature and relative humidity are given in Table 1.

Furthermore, from the surface air temperature (�C) and
relative humidity (%), we derived several variables to be
analysed such as mean temperature (Tmean), maximum
temperature (Tmax), warm spell duration index (WSDI) and
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wet bulb temperature (WBT). From this point forward,
“temperature” refers to “surface air temperature.”

2.2 | Downscaling and bias correction of
ESM outputs

All ESM output (RCP4.5 and G4) were bias corrected and
downscaled to the resolution of the reanalysis dataset
(69.5 km). Moreover, to ensure the quality and validity of
the projection, we examined three different bias correction
methods: quantile delta mapping (QDM), bias correction
constructed analogues with quantile mapping (BCCAQ)
and the trend preserving bias correction method used in the
inter-sectoral impact model intercomparison project
(ISIMIP) approach, which is referred to as the ISIMIP
method hereafter. The bias correction methods are applied
to the downscaled data using “Climate Imprints” developed
by Hunter and Meentemeyer (2005). The “ClimDown” R
package (Cannon et al., 2016) was used to downscale the
ESM outputs to the specified spatial resolution.

Quantile mapping (QM) based methods were chosen
because of their ability to handle higher-order moments in
addition to being computationally efficient (Wood
et al., 2004; Piani et al., 2010; Gudmundsson et al., 2012;
Teutschbein and Seibert, 2012). These methods are also
simple to apply and do not require any assumptions about
the shape of the distribution of the underlying variable. The
QM method assumes that the distribution of simulated or
estimated data preserves the distribution of any observed
data. Some previous works that have been successfully
applied QDM and/or BCCAQ are Sunyer et al. (2012), Sarr
et al. (2015), Switanek et al. (2017), Lanzante et al. (2019)
and Heo et al. (2019), among others. Werner and
Canon (2016) specifically discussed the intercomparison of
multiple gridded statistical downscaling methods (including
QDM and BCCAQ) applied to hydrological extremes. Brief
descriptions of each method are given as follows.

2.2.1 | Quantile delta mapping

The QDM was introduced by Cannon et al. (2015) and
has been proven to be superior to the traditional quantile

mapping method. This method uses the idea of quantile
mapping (Panofsky and Brier, 1968) to preserve the
changes in individual quantiles in general but not
changes in the mean through the following formula:

Df xð Þ=Mf xð Þ+ F−1
Oh

Mf Mf xð Þ� �� �
−F−1

Mh
FMf Mf xð Þ� �� �n o

where, Df xð Þ is the bias corrected data in the future
period, F �ð Þ is the cumulative distribution function
(CFD) with F−1 �ð Þ as the inverse, Oh and Mh are
reanalysis data and the raw model outputs in the histori-
cal period, respectively. Index h refers to “historical” and
f indicates the “future” projection of the model
simulations.

2.2.2 | Bias correction/constructed
analogues with quantile mapping reordering

The BCCAQ is a constructed analogues downscaling
approach where the bias correction of the large scale tem-
perature is done by quantile mapping. This method
entails building a constructed analogue (CA), or a library
of observed daily coarse-resolution and corresponding
high-resolution climate patterns of the variable to be
downscaled (Hidalgo et al., 2008). Daily data are down-
scaled by selecting 30 days from the library that have the
closest similarity to a given simulated day. Ridge regres-
sion is applied to determine the optimal weights that will
be used to combine the 30 corresponding fine-scale
library patterns (Maurer et al., 2010). Then bias correc-
tion of the climate analogue is performed by quantile
mapping (Hunter and Meentemeyer, 2005).

2.2.3 | Intersectoral impact model
intercomparison project

ISIMIP is one of the most popular bias correction
approaches used in impact analysis. The ISIMIP method
(Hempel et al., 2013) has been previously applied by
Moore et al. (2019) and Chen et al. (2020) to correct the
bias of CMIP5 and GeoMIP outputs. ISIMIP is designed

TABLE 1 Summary of datasets used in the analysis

Data Institution Resolution Scale Scenario

MERRA reanalysis NASA 0.625� × 0.625� Daily –

BNU-ESM Beijing Normal University 2.8� × 2.8� Daily G4, RCP4.5

MIROC-ESM-CHEM JAMSTEC 2.8� × 2.8� Daily G4, RCP4.5

MIROC-ESM JAMSTEC 2.8� × 2.8� Daily G4, RCP4.5
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to preserve the long-term absolute (relative) trend in the
ESM simulated data by modifying the daily variability of
the simulated data about their monthly means to match
the variability of the daily observation. A normal proba-
bility density function is assumed, and hence the method
does not utilize quantile mapping ideas. Mapping of the
simulated to observed temperature or relative humidity
can be done by simply fitting linear regression (Hempel
et al., 2013).

3 | RESULTS

3.1 | Skill evaluation of bias correction
methods

We begin the discussion by evaluating the results of down-
scaling and bias correction of temperature data. Relative
humidity results are provided in the Appendix S1.-
Figure 1 depicts the annual mean temperature (land
and sea combined over IMC) plots of the raw model
outputs generated under three different G4 models and
the all-model average, as well as reanalysis data for the
periods of historical reference (1950–2005). Raw model
output refers to the model outputs that have not been
downscaled and bias corrected. We can see that the
raw model outputs have a relatively large spread, indi-
cating bias that needs to be corrected. However, among
those three models, the BNU-ESM model has lower
bias than MIROC models, which tend to underestimate
the temperature reanalysis data. The lower panel of the
figure depicts the data after downscaling and bias cor-
rection using QDM. We provide the plots after down-
scaling and bias correction with BCCAQ and ISIMIP in
the Appendix S1 (Figures 1 and 2) as the pattern is
quite similar to results using QDM. After bias correc-
tion, we observe good agreement on the annual pattern
of the mean temperature among the model outputs and
observations. The models have low spread and resem-
ble the observations well with only few periods where
the ensemble mean of the model deviates from
reanalysis data significantly. The MIROC-ESM-CHEM
model overestimates reanalysis in the early periods,
but it tends to underestimate the reanalysis after
approximately 20 years. The two other models (BNU-
ESM and MIROC-ESM) tend to underestimate the
observations in the 1980s–2000s. Overall, downscaling
and bias correction are effective in obtaining a high
resolution downscaled dataset with lower bias.

The BNU-ESM model had the lowest bias overall, and
Figure 2 shows the spatial pattern of the bias for the
corrected model outputs resulting from QDM. The bias in
this case indicates how much the bias-corrected data

deviates from the reanalysis. From the figure, we observe
that the bias over land area is higher than over sea,
reaching about 0.5�C, particularly over both land and sea in
the eastern part of the domain. The three bias correction
methods generate similar patterns over the region. We esti-
mated the correlation between reanalysis data and bias
corrected data at all 2,625 grid points to evaluate bias cor-
rection performance, finding that the bias correction
methods perform equally well and all models are extremely
good at capturing the spatial patterns of the observations
indicated by significant correlations between reanalysis and
bias corrected data over all grids. The total absence of stip-
pling in Figure 2 indicates that correlations at all grids are
statistically significant at the 95% level.

The skill of the bias correction methods applied to
three different model outputs can be accessed via a Tay-
lor diagram (Taylor et al., 2012). The diagram shows the
correlation between reanalysis and bias corrected series
relative to the root mean square difference. It provides a
way of graphically summarizing how closely a pattern
(or a set of patterns) matches observations (in this case,
reanalysis data). The correlation performed in Taylor dia-
gram measures the temporal correlation between daily
temperature of the bias corrected series with reanalysis
data averaged over the Maritime Continent. Taylor dia-
grams used to evaluate the performance (skill) of the bias
correction methods are depicted in Figure 3 both on an
annual and seasonal basis.

The Taylor diagram indicates that QDM outperforms
BCCAQ and ISIMIP by showing higher correlation and
lower mean square error. The correlation of QDM is
around 0.6, while the correlations of BCCAQ and ISIMIP
are slightly lower. Although QDM performs the best, and
ISIMIP is the least skilful approach, skill differences are
small among the methods with relatively equal correla-
tion values. Furthermore, the seasonal based perfor-
mance suggests that the methods have relatively low skill
in correcting the bias of temperature during the wet sea-
son in Indonesia (DJF and MAM). The skill of the
methods significantly increases during the dry season
(JJA and SON). This improvement in skill reflects the
small variability of daily temperatures during the dry sea-
son in Indonesia, and hence the importance of precipita-
tion regimes in determining reliability of temperature
forecasts.

Bias correction performance for relative humidity is
broadly consistent with temperature (Figures S3 to S5).
From the Taylor diagram of relative humidity (Figure S6),
we see that ISIMIP produces the smallest RMSE. However,
the correlations between reanalysis and the bias corrected
output for all models are very low. The BCCAQ seems to
have the lowest skill indicated by low correlation, high
RMSE and standard deviation. The bias correction using
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ISIMIP might reflect underdispersion of the corrected out-
put. The QDM method gives modest performance in term
of the RMSE, however, the correlations are significantly

higher than those produced by ISIMIP and BCCAQ. There-
fore, we prefer QDM to correct the bias of RCP4.5 and G4
series. Hence, all analyses in the following sections are

FIGURE 2 Map of absolute bias

between reanalysis and bias

corrected model outputs of mean

temperature for the BNU-ESM

model using QDM. The mean

temperature is calculated over

historical period (1950–2005)
[Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 1 Annual mean surface

temperature (Tmean) plots of

reanalysis data, raw outputs of three

ESM models and its mean (a) and the

bias corrected outputs using QDM

(b). The 1980–2005 mean

temperature (26.8�C, dashed line) is

calculated over both land and sea of

Indonesia Maritime Continent

[Colour figure can be viewed at

wileyonlinelibrary.com]
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performed based on the bias corrected data using the best
method, that is, QDM.

3.2 | Impact of SAI on mean
temperature change

Figure 4a depicts plots of bias corrected future projections
of mean temperature differences between the G4 and
RCP4.5 scenarios over the Indonesian Maritime Conti-
nent, generated by three different models. The mean tem-
peratures of G4 and RCP4.5 are not significantly different
(p-value of Wilcoxon signed rank test is >0.05) in the
early years of SAI deployment (2020–2025), consistent
with global behaviour (Yu et al., 2015) and expectations
for the comparatively low total atmospheric burden of
sulphate aerosols. In some years, BNU-ESM shows
cooling over the Maritime Continent in G4 as compared
with RCP4.5 by over 1.0�C. Conversely, MIROC-ESM

and MIROC-ESM-CHEM show substantially less cooling
than BNU-ESM and in some years even show warmer tem-
peratures than RCP4.5. After 2075, approximately 5 years
after termination of geoengineering, the mean temperature
in G4 scenarios increases sharply, consistent with previous
findings on global mean (e.g., Ji et al., 2018). For BNU-
ESM, G4 was significantly cooler than RCP4.5. after 2075
(p < .05, Wilcoxon signed rank test), while the temperature
difference between G4 and RCP4.5 generated by MIROC
models were not significant.

Figure 4b shows the climate anomaly, that is,
G4—historical of mean temperature. We observe a con-
sistently increasing trend in mean temperatures, surpass-
ing a 1�C change after 2050 for the MIROC models. The
change under BNU-ESM model is consistently lower
than MIROC models until 2069. Afterward, the anomaly
in BNU-ESM is almost the same as for MIROC-ESM.

Figure 5a–c shows the spatial pattern of climate
response to the G4. In line with the results in Figure 4,

FIGURE 3 Taylor diagram for bias corrected daily temperature of three ESM outputs using three different methods, that is, BCCAQ

(blue), QDM (red) and ISIMIP (purple) on annual and seasonal basis (MAM, DJA, SON and DJF). Distance between each model and the

point labelled “observed” is a measure of how well each model reproduces reanalysis. The Pearson correlation coefficient indicates similarity

in pattern between the bias corrected output with reanalysis data; the centred root mean square error (RMSE) is proportional to the distance

from the point on the x-axis identified as “observed” (green contours); and the normalized standard deviations of the bias corrected model

outputs is proportional to the radial distance from the origin (black contours) [Colour figure can be viewed at wileyonlinelibrary.com]
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we can see that the BNU-ESM model produces reduced
mean temperatures relative to RCP4.5 over the whole
region. Most regions show a statistically significant
(p < .05) temperature reduction of 0.5�C–1�C. G4 gives
lower temperatures than RCP4.5 over East Nusa Ten-
ggara (NTT), Bali, and Papua, as well as the Indian
ocean. We observe that the spatial response to the SAI
application is more homogeneous under the BNU-ESM
and MIROC-ESM models than the MIROC-ESM-CHEM
model. MIROC-ESM shows only slight, but statistically
significant (p < .05) temperature reductions with G4 as
compared with RCP4.5 over the western part of Java
(e.g., Jakarta), Jambi, southern part of Sumatra Island
and South Kalimantan. MIROC-ESM-CHEM shows even
lower temperature reductions under G4, which are often
insignificant, as indicated by the greater stippled area.

Nevertheless, G4 tends to reduce the temperature of
RCP4.5 over western Java and Kalimantan (with the
exception of North Kalimantan).

Temperature changes after initiating SAI compared
with the historical periods can be seen from the maps on
Figure 5d–f. Under both MIROC models, the maps show
that the mean temperature over most Indonesia region
will be warmer within the periods of 2020–2069 com-
pared with the historical periods. Nevertheless, negative
difference between G4 and RCP4.5 as observed in
Figure 5a–c confirmed that the mean temperature will be
even warmer under RCP4.5. The BNU-ESM model shows
a temperature anomaly of below 0.6�C (which is not sig-
nificant over most land area), while under the MIROC
models the temperature increase is projected to be 0.4�C–
1�C above the level of historical periods. The three

FIGURE 4 Plots of (a) annual

mean temperature (ocean and land

combined over Indonesian Maritime

Continent) difference between G4

and RCP4.5, and (b) climate anomaly

(G4-historical) [Colour figure can be

viewed at wileyonlinelibrary.com]
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models agree that the Java island, East Nusa Tenggara
(NTT) and part of Papua would be the regions with the
least warming under G4. Mean temperature changes over
other regions vary across the different models. Under the
G4 scenario, the temperature increase over Java will not
exceed 0.3�C, which is lower than other regions.

The statistical test of exacerbation and moderation can
be seen from Figure S7, illustrating how effective G4 is in
offsetting climate change. Following Irvine et al. (2019), we
define the effects of climate change as exacerbated if the
absolute magnitude of the G4 anomaly from the historical
is significantly greater than the RCP4.5 anomaly, and that
they are moderated if G4 significantly reduces the absolute
magnitude of the anomaly.

Under BNU-ESM and MIROC-ESM models, the map
shows that SAI diminishes the effects of climate change
over all Indonesia within the 2020–2069 period, and it is
statistically significant except in parts of Papua. The
BNU-ESM model clearly indicates that the difference

between anomaly under G4 and anomaly under RCP4.5
is greater over the sea reaching about 0.5�C–0.8�C. In the
MIROC-ESM-CHEM model, the change of mean temper-
ature is less homogenous than two other models, where
the climate change is exacerbated in some areas and it is
moderated over big islands such as Sumatra, Kalimantan,
Sulawesi and Java islands.

3.3 | Impact of SAI on extreme
temperature

Because the downscaling was performed for daily climate
model output, we can assess changes in extreme tempera-
ture as well as mean temperature. SAI that reduces mean
temperature will likely also be able to reduce the magni-
tude and intensity of extreme events such as extreme
temperature (e.g., Curry et al., 2014; Ji et al., 2018). This
section discusses the impact of G4 on the hottest day

FIGURE 5 Spatial pattern of (a–c) mean temperature difference (G4-RCP4.5) over the 2020–2069 period and (d–f) climate anomalies:

The mean temperature change with G4 deployment relative to the mean temperature averaged over the historical period of 1950–2005
(G4-historical) for BNU-ESM (top), MIROC-ESM (middle) and MIROC-ESM-CHEM (bottom). Stippling indicates grid points where

differences or changes are not significant at the 5% level according to the Wilcoxon signed rank test [Colour figure can be viewed at

wileyonlinelibrary.com]
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(annual maximum value of daily maximum temperature;
TXx) in the Maritime Continent. Figure 6a shows plots of
bias corrected future projection of TXx generated from
the three different G4 simulations during the SAI appli-
cation (2020–2069) period of and the post termination
period (2070–2089). Each plot in Figure 6a provides infor-
mation about the magnitude of TXx under G4 and
RCP4.5, as well as mean of historical periods. We see that
two G4 models (BNU-ESM and MIROC-ESM) consis-
tently generate lower levels of TXx than RCP4.5 up to
2080, which includes a decade of termination. The G4
scenario effectively reduces TXx by about 0.6�C under
BNU-ESM and 0.3�C under MIROC-ESM as compared
with their respective RCP4.5 simulations. Meanwhile,

MIROC-ESM-CHEM generates irregular patterns as to
which years G4 decreases TXx as compared with RCP4.5.
According to a Wilcoxon sign test, TXx differences
between G4 and RCP4.5 in all models are statistically sig-
nificant (p-value <.05).

Figure 6b indicates that the TXx anomaly tends to
increase over time. Thus, the magnitude of TXx change
relative to the historical period under G4 in the BNU-
ESM model is again lower than the MIROC models
within the period of SAI deployment. After 2070 the TXx

anomaly for all models gradually increases with almost
the same magnitude.

Previous studies conducted by Boer and Faqih (2004)
as well as Hulme and Sheard (1999) found that there are

FIGURE 6 Plots of (a) maximum

temperature (TXx) difference between

G4 and RCP4.5 averaged over land

and sea of Indonesian Maritime

Continent and (b) anomaly

(G4-historical) [Colour figure can be

viewed at wileyonlinelibrary.com]
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several different regimes of climate change response in
Indonesia, depending on the location. The maps in
Figure 7a–c demonstrate that the climate change impact
on extreme temperature under G4 also varies. BNU-ESM
shows that SAI will effectively reduce TXx in almost all
regions by 0.1�C–1.5�C, with exceptions over Sulawesi
and South Kalimantan where the impact is not statisti-
cally significant. It is interesting to note that the spatial
variability of the impact is less homogenous over the
southern part of Indonesia, which mostly falls in the
anti-monsoonal region, following the definition of
Aldrian and Susanto (2003). Moreover, the level of TXx

reduction over the anti-monsoonal region is higher than
over the monsoonal region. Meanwhile, MIROC-ESM
indicates that SAI under G4 tends to result in an increase
in TXx over several regions such as South Sumatra, West
Java, South Sulawesi and Papua. However, the increase is
not statistically significant. Most of Java island will expe-
rience significant increase in TXx. MIROC-ESM-CHEM
generates mostly insignificantly different in land except

over Central Java and Jambi where the TXx will signifi-
cantly decrease.

Figure 7d–f show anomalies in TXx across the three
models considered in this study. All models consistently
show that under G4, TXx over Papua is significantly
lower than in historical periods, with the level of reduc-
tion around 1�C. Similar patterns are observed at other
places such as NTT, North Kalimantan, Southeast Sula-
wesi and Bengkulu (under BNU-ESM and MIROC-ESM
models). Meanwhile TXx over most places in Indonesia
increases in G4 by 0.1�C–1�C as compared with the his-
torical period. Jambi, South Sumatra and South Kaliman-
tan are places where the TXx is projected to warm
significantly by around 1�C.

The test of exacerbation and moderation (Figure S8)
indicates that climate changes are moderated over the
sea, indicated by significant reduction on the absolute
magnitude of the anomaly under G4; the anomaly over
land areas is generally not statistically significant, mean-
ing that the absolute magnitude of the anomaly under G4

FIGURE 7 Spatial pattern of (a–c) maximum temperature (TXx) difference (G4-RCP4.5) over the 2020–2069 period and (d–f) climate

anomalies: The maximum temperature (TXx) change with G4 deployment relative to the maximum temperature averaged over the historical

period of 1950–2005 (G4-Historical) for BNU-ESM (top), MIROC-ESM (middle) and MIROC-ESM-CHEM (bottom). Stippling indicates grid

points where differences or changes are not significant at the 5% level [Colour figure can be viewed at wileyonlinelibrary.com]
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and under RCP4.5 is similar. It is interesting to note that
with BNU-ESM, G4 exacerbates climate change over
parts of Papua, North Kalimantan and South Sulawesi.

We now evaluate the impact of SAI on warm spell
duration (WSDI), which is defined as the length of the
longest streak of six or more days with the maximum
temperature exceeding the 90th percentile of the baseline
period. Figure 8 shows WSDI changes under the three
different models.

From Figure 8a–c, we see that under BNU-ESM, G4
results in obviously reduced warm spell days compared
with RCP4.5 over the period 2020–2069, (p < .05

according to a Wilcoxon test). After SAI termination
(2070 onward), the WSDI in G4 rebounds to RCP4.5
values. Different results are observed for the MIROC
models, where SAI is effective in reducing warm spell
days only within a few years after SAI deployment, and
gradually WSDI values rise to match the level of
RCP4.5 and even surpass it after 2060. Both MIROC
models have no significant differences between RCP4.5
and G4 for WSDI. The WSDI under SAI on post termi-
nation periods is about 1.3 days longer than under
RCP4.5, which is statistically significant (p-value of
Wilcoxon test equals .02). Under BNU-ESM model, the

FIGURE 8 Time series of WSDI (days) under G4 and RCP4.5 in the periods of 2020–2089 with the historical level (mean of 1950–2005)
shown as a black line for each ESM for BNU-ESM (a), MIROC-ESM (b) and MIROC-ESM-CHEM (c). Spatial pattern of WSDI difference

between G4 and RCP4.5 for BNU-ESM (d), MIROC-ESM (e) and MIROC-ESM-CHEM (f). Stippling indicates grid points where differences

or changes are not significant at the 5% level under the Wilcoxon signed rank test [Colour figure can be viewed at wileyonlinelibrary.com]
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warm spell days is simulated to be generally below the
historical level up to 2050.

Figure 8d–f show spatial patterns of WSDI differences
between G4 and RCP4.5. We see that, like the other indi-
ces examined in this study, the geographical response to
SAI varies. Under BNU-ESM, the northern Java, southern
Kalimantan and North Sumatra, Riau and Jambi experi-
ence longer warm spell days under SAI (about 1–3 days lon-
ger), while elsewhere WSDI is simulated to be 2–4 days
shorter than under RCP4.5. The MIROC models generate
similar patterns and a more homogeneous impact on WSDI
with little significant change on land.

3.4 | Impact of SAI on relative humidity
and wet bulb temperature

Relative humidity is important for livability such as
human comfort, health and safety and is a major compo-
nent of calculating WBT, which also depends on surface
temperature and wind speed. WBT is the temperature of
moist air, indicating the lowest temperature at which any
fluid can be cooled through evaporation. Ideal relative

humidity is between 40% and 60% (Wolkoff, 2018).
Indonesia's climate is the tropical Maritime Continental
type, and one of the most humid regions in the world.
Reanalysis data shows average relative humidity is about
70%–95%. Sumatra, Kalimantan, Sulawesi and Papua are
regions with the highest humidity levels. Java island, Bali
and NTT tend to be less humid, with the humidity level
between 60% and 70%. However, west Java (including
Jakarta) is the most humid place in Java. The three ESM
projects relatively show small changes in mean humidity
and WBT in future. MIROC-ESM and MIROC-ESM-
CHEM show a slight increasing trend in relative humid-
ity over the historical period for both RCP4.5 and G4.
Under G4 within the period of 2020–2069, the relative
humidity over land increases by 1%–5%. Java island, Bali
and NTT experience increasing relative humidity, while
the relative humidity over eastern part of Sumatra island
and south Sumatra tends to be similar to the level of the
historical period. The southern part of Papua experiences
the highest relative humidity anomaly.

The average WBT over Indonesia based on reanalysis
data and ESM outputs over the historical period was
between 21�C and 25�C. This level is associated with

FIGURE 9 Plot of number of days per year with WBT > 27�C under three different models, that is, (a) BNU-ESM (b) MIROC-ESM

(c) MIROC-ESM-CHEM, averaged over the 2,625 Indonesian grid for G4 (black), RCP4.5 (yellow), and the mean of reanalysis (green dashed

line) [Colour figure can be viewed at wileyonlinelibrary.com]
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medium risk of heat stress especially for heavy exercise
or heavy work. However, changes in the average WBT
are not as important as differences in the high end tail of
the distribution. Here we focus on the future projection
of annual number of days with the WBT > 27�C. This
threshold is chosen due to its associated risk of heat
related health problems and heat stress under conditions
of intense and prolonged physical activity, especially for
outdoor activities. Moreover, Sparke et al. (2001) and
Caulfield et al. (2014) also defined that the WBT over
27�C is the “emergency” condition for livestock.

Figure 9 shows in the historical period the annual aver-
age number of days with WBT > 27�C of the historical
periods is between 0 and 1. Hence it is a rare event. The
occurrence of WBT > 27�C under RCP4.5 for all 3 models
is projected to be higher than under the G4 scenario, with
an increasing trend over the simulation. All models project
that under SAI, the number of days with WBT > 27�C
within the periods of 2020–2059 (i.e., 40 years since SAI
deployment) would be below five events per year.

Consistent with the pattern observed on extreme tempera-
ture, the number of events will increase significantly after
the termination of SAI. BNU-ESM exhibits lower likelihood
of WBT > 27�C than the MIROC models. Under RCP4.5,
the rate of extreme WBT days will be significantly higher
than with SAI, and may be over 15 days per year. The spa-
tial distribution of extreme WBT (Figure 10, left panel) con-
firms that compared with RCP4.5, all G4 models show
reductions in number of days with WBT > 27�C up to
2 days in some locations especially over the ocean. How-
ever, over land the models indicate that SAI under G4
would not significantly reduce them relative to RCP4.5.

The maps in Figure 10d,f compare the change in the
number of days with WBT > 27�C after SAI deployment
compared with historical periods (G4-historical). We do
not perform the exacerbation and moderation test as the
average number of days with WBT > 27�C during histori-
cal period is close to zero, leading to similar results as
Figure 10a–c. We observe no significant change in the
number of events over different places in Indonesia for

FIGURE 10 Number of days with WBT > 27�C differences between G4 and RCP4.5 under (a) BNU-ESM, (b) MIROC-ESM, (c) MIROC-

ESM-CHEM and climate anomaly defined as difference between G4 and historical for (d) BNU-ESM, (e) MIROC-ESM, (f) MIROC-ESM-

CHEM. Stippling indicates grid points where differences or changes are not significant at the 5% level under the Wilcoxon signed rank test

(a–c), and under Wilcoxon rank sum test (d–f) [Colour figure can be viewed at wileyonlinelibrary.com]
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the BNU-ESM model. The two MIROC models project
that the number of days with WBT > 27�C would
increase by about 1–2 days relative to historical period
over several areas. North Kalimantan, North Sumatra
(Medan), part of Papua and Timor sea are among places
that will experience significant increase on the number of
days with WBT > 27�C. We applied a Wilcoxon rank sum
test to determine significance of change between the
number of days with WBT > 27�C under G4 and histori-
cal level as the tested data are independent with different
number of observation.

4 | DISCUSSION AND
CONCLUSION

This article provides an overview of the impacts of SAI as
represented by the G4 scenario on two relevant extreme
temperature indices as well as mean temperature change
for the Maritime Continent. Although our conclusion
may be indicative of general effects of SAI, the specifics
are based on the G4 experiment. The data we analysed
was downscaled and bias corrected using QDM, which
we found to be slightly better than BCCAQ and ISIMIP.
Moreover, the impact of SAI on relative humidity and
WBT have been investigated; to the best of our knowl-
edge, the impact of SAI on WBT, for example, number of
WBT > 27�C has never before been explored. Models
indicate that the Maritime Continent exhibits consider-
able variability in the effects of climate change, particu-
larly between the land and ocean parts. There are some
consistent patterns to change, but also across-model dif-
ferences, especially in the magnitude of the responses.
Similarly, modelled changes in mean temperature and
two extreme indices under SAI over the Maritime Conti-
nent also vary spatially. We note also that the spatial SAI
impact on extremes is less uniform than mean tempera-
ture, and some regions do not show a substantial differ-
ent in extreme temperature under SAI compared with
under RCP4.5. However, all models agreed that SAI sim-
ulated cooler mean temperature than RCP4.5. While the
climate change impact on mean temperature is exacer-
bated in some areas and it is moderated over big islands
such as Sumatra, Kalimantan, Sulawesi and Java islands,
the absolute magnitude of the anomaly over most of land
areas under G4 and under RCP4.5 is about the same,
with an exception that under BNU-ESM the climate
change is exacerbated over part of Papua, North Kali-
mantan and South Sulawesi.

Our analysis indicates that SAI will tend to decrease
the mean temperature over Papua and NTT relative to
the 1950–2005 mean. The mean temperature in other
places would remain at or close to its historical level

under G4. Nevertheless, the warming occurs under SAI is
lower than without SAI. It should also be noted that the
G4 experiment was not designed to maintain tempera-
tures at a prescribed level (e.g., the 1950–2005 level), but
to determine the impact of a constant SO2 aerosol injec-
tion load as greenhouse gas concentrations increase
according to RCP4.5. Hence the near balance in tempera-
tures over the Maritime Continent is an unintended
effect. We would expect the G4 experiment to provide
insights on spatial patterns of variability and degree of
confidence in ensemble predictions. The daily maximum
temperature extreme measured by TXx over Papua and
NTT (also northern Kalimantan, southeast Sulawesi and
Bengkulu) is simulated to be substantially reduced under
G4 relative to RCP4.5, while elsewhere it increases
slightly by 0.3�C–0.5�C. G4 would shorten the warm spell
duration (WSDI) over those particular regions (Papua,
NTT, northern Kalimantan, Southeast Sulawesi and
Bengkulu) by 1–2 days, especially during the early period
of SAI deployment.

Climate change has impacted Indonesia by increasing
its vulnerability to weather-related disasters such as for-
est fires and drought. The National Agency for Disaster
Management (BNPB) reported that Riau, Jambi, South
Sumatra, western, southern and central Kalimantan are
high risk regions from fire. These regions are mainly cov-
ered by forest and fires have been consistent occurrences
over the last decade whether set by human or by weather.
The total forest lost in 2019 was about 857,000 Ha. East
Nusa Tenggara (NTT) and Papua are two regions with
high risk of drought. High temperatures tend to exacer-
bate drought conditions and increase the likelihood of
fires. Under SAI, the temperature in those particular
regions is projected to be cooler. Moreover, Sen (2015)
pointed out that dry spells may describe periods of pre-
cipitation deficits resulting in occasional water shortages,
droughts and arid conditions. A projected shortening of
WSDI under SAI may be useful for reducing some of the
dangers of dry spells.

We note that the variability of SAI impacts is higher
over southern Indonesia, which is mostly in the monsoonal
region (Aldrian and Susanto, 2003). Yamanaka (2016)
argued that warming of the southern region of Indonesia is
due to a combination of factors, such as exacerbation of
heat extremes by drying, as well as changes in the El Niño
Southern Oscillation (ENSO). Detailed statistical analysis of
ENSO changes under solar geoengineering (Gabriel and
Robock, 2015; Guo et al., 2018) found no significant change
in variability. In general SRM acts to counter the general
greenhouse gas trends of wet becoming wetter and dry
becoming drier (Tilmes et al., 2013; Ji et al., 2018), but the
intertropical convergence zone may be an exception to this.
The equatorial edge of the Hadley cell shows smaller
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seasonal amplitude of latitudinal movement under solar
geoengineering (Smyth et al., 2017; Guo et al., 2018), and
hence would be expected to influence Indonesia. Wang
et al. (2018) note that the tropical cyclone season is moved
about a month earlier under G4 than RCP4.5, a consistent
response across ESM and cyclone basins, and which could
be related to the reduced heating under SRM and reduced
amplitude of ITCZ motion. Given the importance of deep
convention systems in the region, the changes near the tro-
popause noted under SRM by Pitari et al. (2014) and Wang
et al. (2018) would be very significant to wet and dry sea-
sons in the Maritime Continent. The response at the
100 hPa level appears to be model-dependent and
resumably strongly affected by the details of aerosol param-
eterization and physics employed by the SRM. Although it
is beyond the scope of the present work to thoroughly
investigate these factors, they are important for understand-
ing how temperatures in Indonesia may change under cli-
mate change.

We see that changes in mean temperature and TXx in
two models (e.g., BNU ESM and MIROC-ESM) are quite
consistent in terms of their spatial pattern, although the
magnitude of the change is different. Meanwhile, the spa-
tial impacts of MIROC-ESM-CHEM differs significantly
from those two models. However, we can expect that SAI
would be effective at reducing mean temperature and the
magnitude of extremes, consistent with the global trend
as found by Jones et al. (2018). All models consistently
show that under GeoMIP experiment G4, the mean tem-
perature rises over Indonesia could be kept within 0.5�C–
1�C, that is, below the Paris Agreement (global) target.
Moreover, during post termination periods, models show
that the temperature level would rebound to RCP4.5 but
would never rise higher than under RCP4.5.

We also investigated the number of days with
WBT > 27�C. The choice of 27�C as the threshold refers
to previous studies indicating that this represents an
exposure to heat stress leading to exacerbated health risk
(mental fatigue, physical depletion, dehydration, etc.). A
study by the Sports Medicine and Physical Fitness Com-
mittee of the American Academy of Paediatrics (2000)
defined WBT over 27�C as a high risk condition indicat-
ing discontinuation of physical activity for nonacclimated
persons or persons with pre-existing health conditions.
Furthermore, WBT > 29�C is categorized as an extreme
risk which may lead to body collapse and death.

Discussion on the SAI impact to relative humidity
and heat stress in Indonesia is an important issue, which
may induce heat-related health risk and mortality espe-
cially in a fast growing city such as Jakarta. Varquez
et al. (2020) focused their study on the future changes in
heat-related mortality of elderly citizen in Jakarta and
found that heat-related mortality of the elderly in Jakarta

would increase in the 2050s because of population
growth and climate change. Moreover, they found that
mitigating climate change by following the RCP 2.6
greenhouse gas emissions scenario could reduce the
August elderly mortality count by 17%. Our research
examined the G4 scenario which follows the RCP4.5
pathways and does not directly equate to RCP2.6, but
Varquez et al. (2020) may be a useful guide to estimating
elderly mortality under G4 scenario.

All models indicated the impact of SAI on relative
humidity change would be heterogeneous over Indonesia.
Java, Bali and NTT would become more humid under SAI
compared with average humidity level during the historical
periods. Nevertheless, the models project that SAI would
effectively reduce the humidity level of RCP4.5 over west
Java (including Jakarta). The average number of days with
WBT > 27�C would increase significantly during the SAI
deployment compared with historical levels, but much less
than under RCP4.5, and events will significantly increase in
the post-termination periods.

Coffel et al. (2019) highlighted the link between extreme
temperature and humid-heat change in the context of land-
surface drying. The study found that for many places global
warming lowers soil moisture, reducing relative humidity
level and heat stress, thus providing a negative feedback on
WBT. The drying associated with warming dampens mid-
latitude WBT increases by up to 0.5�C, and also dampens
the rise in frequency of dangerous humid-heat
(WBT > 27�C) in parts of North America and Europe. In
our study we find that changes by SAI in WBT extremes
are larger over the oceans than land. This is therefore less
likely to have impacts on health and mortality than if
changes were greater over land. This result tends to contra-
dict intuitive understanding of SRM impacts which results
in a lower global humidity and fewer floods, but the Mari-
time Continent is somewhat different form this global pic-
ture in having reduced (precipitation–evaporation) and
runoff under RCP4.5 than G4 (Wei et al., 2018). This results
in smaller changes in WBT over the land regions than
oceans for Indonesia, and suggests that for WBT, G4 may
not be analogous to RCP2.6, despite similar expected
impacts in surface temperatures. The simulation of WBT
would be better done by high resolution dynamic models
than the downscaling methods that we used, but this pre-
liminary research emphasizes that differences in complex
climate impacts require sophisticated impact models.

Overall, we conclude that SAI could reduce some of
the negative impacts of climate change induced by tem-
perature. Since drought is tied to temperature extremes
(along with precipitation and other climate variables),
SAI could be effective at reducing the risk of drought in
highly vulnerable areas. TXx over the fire spots will be
projected to be higher than in the historical period, and

2810 KUSWANTO ET AL.



so simulations with high resolution dynamic models
under SAI may be an important area of future research.
Ours is the first study of detailed, high resolution projec-
tions of the effects of SAI on Indonesia and the Maritime
Continent, and provides much needed information for
policy makers. Moreover, this study provides understand-
ing of the general characteristics (pattern and magnitude)
of future climate change hazards under SAI in Indonesia,
setting the foundation for further analysis of impacts to
development sectors. Further application is in the process
of developing the National Roadmap of mitigation and
adaptation strategies to future climate change impact,
especially dealing with the unique characteristics of each
region, with regard to fire and drought risk reduction.
Moreover, the analysis of relative humidity and WBT are
relevant for strategic planning in the health sector.

Although this study found many interesting results
about the impact of SAI on temperatures in the
Indonesian Maritime Continent, we did not evaluate
overall drivers of the climate system over the Indonesian
Maritime Continent. This would make a useful topic of
future research. Moreover, although the maps provide
some geographic information, all aggregate metrics in
this study were calculated over the combined sea and
land areas, which can introduce a certain degree of bias.
Because climate impacts could be substantially different
between land and sea, future research can also be
directed to analyse the SAI impacts separately between
land and sea.
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