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Fig. 3. Sun-illuminated multibeam bathymetry (illuminated from NE) showing (a) a probably older 
shipwreck (unknown age) with deep scours and long sediment drifts, (b) a shipwreck with 
minor scours, and (c) a more modern (20th century) shipwreck with small sediment drifts.

Geophysical studies are plagued by short 
and noisy time series. These time series are 
typically nonstationary, contain various long-
period quasi-periodic components, and have 
rather low signal-to-noise ratios and/or poor 
spatial sampling. Classic examples of these 
time series are tide gauge records, which are 
infl uenced by ocean and atmospheric circula-
tion patterns, twentieth-century warming, and 
other long-term variability.

Remarkable progress recently has been 
made in the statistical analysis of time series. 
Ghil et al. [2002] presented a general review 
of several advanced statistical methods with a 
solid theoretical foundation. This present article 
highlights several new approaches that are easy 
to use and that may be of general interest. 

Extracting trends from data is a key element 
of many geophysical studies; however, when 
the best fi t is clearly not linear, it can be dif-
fi cult to evaluate appropriate errors for the 
trend. Here, a method is suggested of fi nding 
a data-adaptive nonlinear trend and its error 
at any point along the trend. The method has 
signifi cant advantages over, e.g., low-pass 
fi ltering or fi tting by polynomial functions in 
that as the fi t is data adaptive, no preconceived 
functions are forced on the data; the errors as-
sociated with the trend are then usually much 
smaller than individual measurement errors. 

Fourier or wavelet techniques are often used 
in time series analysis extracting periodic sig-
nals. However, a diffi culty for many users has 

been how to relate the wavelet spectrum they 
compute with another spectrum from a different 
series, in order to examine causality and phase 
relations expected in an a priori mechanism. 

Grinsted et al. [2004] present two new tech-
niques that advance the wavelet approach pop-
ularized by Torrence and Compo [1998]. Often, 
it is not simply the wavelet spectrum of a time 
series that is of interest, but rather the similar-
ity it has with the spectrum from another, pu-
tatively related series. Two suitable methods to 
examine the relationship between two spectra 
are the cross wavelet transform (XWT) and 
wavelet transform coherence (WTC). Torrence 
and Compo [1998] discuss both, but provide 
no software.

Grinsted et al. [2004] give this software and 
additionally formulate statistical signifi cance 
tests. XWT exposes regions in time-frequency 
space with high common power, and further 
reveals information about the phase relation-
ship between the two series. If the two series 
are physically related, a consistent or slowly 
varying phase lag would be expected that can 
be tested against mechanistic models of the 
physical process. 

WTC can be thought of as the local correla-
tion between the time series in time-frequency 
space. Where XWT unveils high common pow-
er, WTC fi nds locally phase locked behavior. 
The more desirable features of the WTC come 
at the price of being slightly less localized in 
time-frequency space. 

The signifi cance level of the WTC has to be 
determined using Monte Carlo methods. The 
XWT signifi cance level can be tested analytically 
against red noise (which, unlike white noise, is 
autocorrelated, and hence can mimic long-term 

trends) using the fi rst-order autoregressive coef-
fi cient of the time series. The WTC and XWT meth-
ods are useful especially in nonstationary time 
series where there may be statistically signifi cant 
periods of correlation for only certain intervals of 
the whole record. 

It is advisable to have a good understanding 
of the data before starting wavelet analyses; 
the time series, for example, should be close to 
normally distributed. If the time series is not, 
then it should be transformed. Consider what 
outcomes are expected given the proposed 
linking mechanism. It is cautioned against 
blindly applying these methods to randomly 
chosen data sets.

ENSO and Temperatures in England

An example of the XWT and WTC methods 
can be seen in Figure 1, which shows part of 
the 340-year-long central England temperature 
(CET) series [e.g., Plaut et al., 1995] that over-
laps with the atmospheric representation of El 
Niño–Southern Oscillation (ENSO), the South-
ern Oscillation Index (SOI). Both series exhibit 
strong power in the 4- to 8-year period band. 
However, here, a 14-year cycle that Plaut et al. 
[1995] fi nd clearly in the full CET is discussed. 
Jevrejeva et al. [2004] also found a 13.9-year 
periodicity SOI signal that is transmitted, with a 
1.8- to 2.1-year lag, by equatorial coupled waves 
and fast boundary waves to the polar regions. 

To test whether the CET is also recording 
this signal, the XWT and WTC plots were exam-
ined; indeed, there is a peak of power and co-
herence around the 14-year period. However, 
the phase varies considerably over the time 
series, suggesting that the mechanism must 
have changed appreciably—or alternatively, 
that there is no cause and effect mechanism 
involved and the coincident power is merely 
accidental. 

The authors believe that there is most likely 
a causative relationship but that atmospheric 
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conditions around the 1920s were in a tran-
sitional state, with, for example, the North 
Atlantic Oscillation and the Arctic Oscillation 
and Scandinavian surface air temperatures all 
being rather uncorrelated for that period [e.g., 
Jevrejeva et al., 2003].

Nonlinear Trends in Sea Level and Temperature

The widely used methods of estimating 
trends are simple linear or polynomial least 
squares fi tting, or low-pass fi ltering of data 
followed by extension to data set boundaries 
by some method [e.g., Mann, 2004]. A new 
approach makes use of singular spectrum 
analysis (SSA) [Ghil et al., 2002] to extract a 
nonlinear trend and, in addition, to fi nd the 
confi dence interval of the nonlinear trend. 
This gives confi dence intervals that are easily 
calculated and much smaller than for polyno-
mial fi tting. 

Monte Carlo SSA (MC-SSA) [Allen and Smith, 
1996] is used to decompose the time series 
with data-adaptive orthogonal fi lters. SSA am-
plifi es signal-to-noise ratio by separating the 
original time series into low-frequency trends 
and narrow-band quasi-periodic signals, with 
the rest (assumed to be noise) distributed 
among the fi lters. 

In MC-SSA, lagged copies of the time series 
are used to defi ne coordinates in a phase 
space that will approximate the dynamics 
of the system. It is often suggested that the 
number of lagged copies (or the embedding 

dimension) is chosen between one fi fth and 
one half the length of the time series, refl ect-
ing a trade-off between spectral resolution 
and optimal noise reduction. The smaller the 
embedding space, the shorter the length of 
the window over which the resolved compo-
nents are calculated, and the less resolved 
is each component. The longer the window, 
the greater the frequency resolution of each 
component, but the greater the chance that 
noise is mistaken for signal and that a greater 
proportion of the time series is affected by the 
data boundaries. 

A wise choice of embedding dimension can 
be made with a priori insight or perhaps more 
commonly may be found by simply playing 
with the data. The trend is the collection of 
reconstructed components that have a period-
icity longer than about twice the length of the 
time window (or embedding dimension). 

The amount of measurement noise 
remaining in the trend can be estimated by 
generating a large surrogate set of white mea-
surement noise added to the original time 
series and then convoluting with the SSA fi lter 
representing the trend. Doing so allows one 
to specify uncertainties in the predictions 
where the SSA fi lter overlaps data boundaries. 
Here, the series is padded so the local trend is 
preserved (cf. minimum roughness criterion, 
[Mann, 2004]). The confi dence interval of the 
nonlinear trend is usually much smaller than 
for a least squares fi t, as the data are not forced 
to fi t any specifi ed set of basis functions. 

Figure 2 illustrates how the nonlinear trend 
fi ts the global sea surface temperature data 
set. Note the increased size of the confi dence 
interval in the early part of the record due to 
larger observational errors at that time, and 
the poor quality that a linear fi t would provide. 

Figure 3 shows the linear and nonlinear 
trends for sea level at Brest, France, one of 
the world’s longest sea level records. Note the 
small confi dence intervals of the nonlinear 
compared with the linear fi ts. To date, linear 
fi ts have usually been used to estimate sea lev-
el rise despite the clear inconsistency of the 
data to a linear model. The nonlinear trend 
shows a more rapid rise around 1920–1940 
than at present and a slight decreasing of 
sea level prior to 1840 that is not detected by 
the linear trend. A comparison with Figure 2 
shows that there is not a simple correlation 

Fig. 1. The wavelet spectra of the SOI (a) and CET (b) series and their XWT (c), upper colorbar 
representing normalized variances and their WTC (d), lower colorbar - units are wavelet squared 
coherencies. The vectors indicate the phase difference (an arrow pointing from left to right signi-
fies in-phase, and an arrow pointing upward means that CET lags SOI by 90º (i.e., the phase 
angle is 270º); the dimmed plot area is affected by data boundaries. Bold contours are 95% 
confidence levels. 

Fig. 2. Nonlinear trend in global (60°S–60°N) 
sea surface temperature anomaly relative to 
1961–1990 (bold curve) based on the 150-
year-long reconstructed sea surface tempera-
ture 2° data set (dotted [Smith and Reynolds, 
2004]), using an embedding dimension 
equivalent to 30 years; errors are the mean 
yearly standard errors of the data set. Shading 
is the 95% confidence interval of the nonlinear 
trend. The curve was extended to the data 
boundaries using a variation on the minimum 
roughness criterion [Mann, 2004]. For compar-
ison, the thin curve is the low-pass trend using 
Mann’s low-pass filter and minimum rough-
ness with a 60-year cutoff frequency.

Fig. 3. Nonlinear and linear trends in time 
series of mean sea level at Brest, France, for an 
embedding dimension equivalent to 30 years 
and an individual measurement standard 
error of 10 mm. The 95% confidence interval 
for the nonlinear fit is shaded and marked by 
the curved lines for the linear fit.
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between global sea surface temperatures and 
sea level at any particular place. 
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Hotspot Ecosystem 
Research on the Margins 
of European Seas

The European Union has recently funded 
an integrated project called Hotspot Ecosystem 
Research on the Margins of European Seas, 
or HERMES, which began on 1 April 2005 and 
will run for four years. HERMES is designed to 
gain new insights into the biodiversity, struc-
ture, function, and dynamics of ecosystems 
along Europe’s deep-ocean margin. 

It represents the fi rst major attempt to under-
stand European deepwater ecosystems and 
their environments in an integrated way, by 
bringing together expertise in biodiversity, ge-
ology, sedimentology, physical oceanography, 
microbiology, and biogeochemistry, so that the 
relationship between biodiversity and eco-
system functioning can be understood. The 
project extends beyond basic research, map-
ping, and habitat classifi cation into ecosystem 
modeling and policy advice. The modeling is 
aimed at improving the ability to forecast the 
effect on ecosystems of natural and anthropo-
genic perturbations. 

Finally, an attempt will be made to integrate 
the scientifi c output of the project with socio-
economics and legal research to underpin the 
development of a comprehensive European 
Ocean and Seas Governance strategy (see 
http://europa.eu.int/comm/fi sheries/news_
corner/discours/speech55_en.htm). This will 
be the fi rst time that such an integrated ap-
proach has been adopted on a pan-European 
scale for the deep sea. The intended outcome 
is to develop concepts and strategies for the 
sustainable use of offshore marine resources, 
while taking into account the negative impact 
of human activities.

The primary ecosystems to be studied 
include biodiversity hot spots, such as cold 
seeps, cold-water coral mounds, canyons, and 

anoxic environments, where the geosphere 
and hydrosphere infl uence the biosphere 
through the escape of fl uids, presence of 
gas hydrates, and deepwater currents. Open-
slope environments, where landslides and 
deep-ocean circulation affect ecosystem 
development, will also be studied. These 

systems require urgent study because of their 
possible biological fragility, unique genetic 
resources, global relevance to carbon cycling, 
and possible susceptibility to global change 
and man-made disturbances. Past changes, 
including catastrophic events, will be assessed 
using sediment archives. HERMES will make 

news

Fig. 1. Bathymetry of the European margin and the distribution of canyons, overlain by known 
occurrences of cold-water corals, cold seeps, and mud volcanoes. Irregular red areas show the 
locations of major landslides. Yellow boxes indicate HERMES study sites.
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